KUMA FORTH

FOR

THE

M5X MICRO-COMPUTER

(C) 1584 M. Fordham & D. Williams

ISEN NHQ 07457-0006-3

ALL RIGHTS RESERVED

No part of this manual or program may be reproduced by any means
without prier writen permission of the author or the publisher.

This program is supplied in the belief that i1t operates as
specified, but Kuma Computers Ltd. (the company) shall mot he
liakle in any circumstances whatscever for any direect or indirect
1oss or damage to property incurred or suffered by the customer
or any other person as a result of any fault or defect in goods
or services supplied by the company and in no circumstances shall
the Company be liable for conseguental damage or loss of profits
(whether or not the possibility thereof was seperately advised to
it or reasonably foreseeable arises from the use or perfcrmance
of such goods or services.

Published by:- Kuma Computers Ltd. .,
12 Horsgeshoe Park,
Pangbourne,
Herks RCE 7.JW

Telex B49462 Tel 07357 4335

Copyright Licence

"the Socftware" the software program or programs supplied
with this Licence

"the Licenser™ Kuma Computers Ltd

In c¢onsideration of the lump sum payment by the Custoner the
Licenser hereby grants to the Customer a non-exclusive non-
transferable Licence te use the Software on the following terms
and conditions.

1 The Licence shall commence on receipt of the Scoftware by the
Customer and ahall continue thereafter unless terminated in
accordance with the terms hereof.

2 The Licence authoriges only the Customer to use the Scoftware
only on equipment owned or used by him,

3 The Software and the copyright in and title to all industrial
property rights therein are and shall remain the property of the
Licenser.

4 The Customer shall not donate market lend or otherwise
dispose of the Software to any other person or company.

S The Customer shall neot assign sublet or otherwisze transfer
this Licence or the Software by operation of law or otherwise in
whole or 1in part directly or indirectly and any purported
assignment of this Licence by the Customer shall be void.

6 The Customer shall not make copies of the Software in machine
readable or printed or other form except that such copies shall
he for his personal use and provided that such copies will be
kept under his close perscnal contrel and that ne more than five
such copies shall be in existence at any one time.

7 The Licenser may terminate this Licence forthwith upeon notice
if the Customer neglects or fails to perform or observe any of
the terms herecf.

B Immediately upon termination of this Licence for whatever
reason the Customer shall return the Software to the Licenser and
shall not have the right to retain any copies of any part thereof
by any means.

9 The Ligenser shall not be liable for damages or
consequential ‘damages directly or indirectly arising out of the
or 1in connection with the delivery use or performance of the
Software.

1¢ If any of the conditions or parts thereof of this Licence are
held to be invalid inoperative or unenforceahble by any Court they
are to that extent to be deemed omitted. The Law of this Licence
shall be the Law of England.

CONTENTS

ABOUT THIS GUIDE 2
Introduction to Forth 3
Implementation Notes 4
QFPERATION)
USING FORTH o
Secreen Editor 22
FORTH TECHNMIQUES 253
Parameter and Return Stacks 25
relational and Logical Operators 27
conditrional and Looping Constructs 27
Numbers and Arithmetic 29
High Level Defining Words 31
Vocabulary Centrol 14
Formatted Number Qutput 35
Characters and Strings 37
Colon Compiler 40
Floating Point Extensiocn 42
String Handling Words 48
GLOS3ARY 51

Copyright D Williams 1584

AROUT THIS GUIDE

This booklet ig divided into four sections. The first of these
contains a brief introduction to Forth and description of the

features of the implementation followed by operating
instructions. The latter should be read before the software 15
used. The other three sections are entitled Using Forth, Forth

Techhiques and Glossary.-

Using Forth is an introduction to the Forth language. sSince
Forth is an interactive language this gection is built round
examples which can be executed simply by typing them at the
keyboard. The cection is tutorial in nature and concludes with a
description of the editing facilities.

Forth Techniques is a much more detailed guide o Forth
programming. Several different aspects of the language are
roverad in some depth and the presentation is a compromise
between an introeduction and a source of reference. This section
also details floating peint arithmetic.

The Glossary is a description of the words of the core language.
It should be stressed that it is not necessary for the user to
knew all these words to make effective use of Forth. Ac 3 self
defining language Forth provides a wide range of facilities,
selective use of which can be made as the starting peint for any
particular application. As new words are added by the user the
language comes to reflect the application rather than the
reverse. :

After reading the operating instructions most users will want to
begin with the section Using Forth and then move on to Forth
Techniques. Forth is an easy language to use but is likely teo
contain many unfamiliar i1deas to start with. The different
approaches used such as postfix notaticon, stacks and close
integration with hardware are none the less more unusual than
difficult. They may take a little time to grasp but the effort
should be well worthwhile.

Introduction to Forth

Forth is a fully structured self extending language. It is a
typeless language offering the user complete freedom to design
and manipulate data structures of arbitrary complexity. 1t

allows +the user full access toe all machine functicns including
those controlling the operation of the language itself.
Programming in Forth consists of extending the langueage in ways
defined by the user. The results are indistinguishable from the
core language.

Operators in Forth are called words and are of two types known as
primitive and secondary words. Primitive words are cbiject code
routines which contain 280 machine code instructions. Secondary
words contain either threaded code or data such as constants,
variables and arrays. Threaded code, which is the result of
compilatien in Porth, consists of lists of addresses of other
words to be executed in sequence like a series of subroutines.
To the user, though, primitive and secondary words hehave in the
SAMEe WaY .

Wwords are contained in a dictionary which is a linked 1list so
that each word containg the address of its predecessor in the
dictionary. The dictionary is divided into vocabularies, each of
which contains words associated with a partigular function.

General purpose words are found in the core vogabularxy. New
words are added to the dictionary using defining words which
compile the language. A new word is defined as a segquence of

exlsting words.

processes communicate through stacks (last in first out lists].
one stack, called the data stack, parameter stack or where there
igs no ampiquity just the stack, is explicitly available to the
aser for the manipulation of numbers and other temporary data.
Another stack, called the return stack, does not require the
intervention of the user but can also he used for data.

A wvirtuwal memory system organises available mass storage into

blocks of a fixed number of bytes each. when referenced by
number a block is automatically read into a buffer in the random
access MmMemory. An important use of these hblocks is for the

storage of text representing new Forth words and programs and for
this purpose klocks are grouped into screens of 1024 characters.
The text can be edited using text editor words contained in an
editor vocabulary.

Forth differs from other languages because the wordset is chosen
by the user, Starting from an initial general purpose set new
and progressively more powerful words are built up interactively
and in small steps. The resulting wordset reflects the users
application and can be as specialised as required. There are as
few restrictions as possible and the aim is to make the most
cfficient use of hardware rather than mask 1ts existence.

Implementation Notes

The implementation conforms to the standard FIG TFORTH model
vargsion 1.1. The character set is the ASCIY 128 character set
but other characters may be included as data or in strings.

By convention letters used in the names of Forth words are always
in the upper case but lower case letters are not translated into
the upper case, Lo OVErcome this it is suggested that you set the

Sshift Lock. Fach word and number in an input lipe must be
separated from others by at least one space and no spaces should
be left in the middle of a word name of number. Ng action will

he takep until a line is completed with a carriage return except
echoing characters to the screen.

The language itself recognises only backspace, and return as
control keys; all others are treated as data. A primitive word
KPY allows this arrangement +to be modified for particular

applications such as &a sCreen editor. cee later for more
details.
.1 table of error messages appears over the page. The error

message numbers can be replaced with text by executing 1 WARNING!
providing that error message ©On screens 4 and 5 are resgident,

Errcr message 0 Unrecognised input

1 Empty stack

2 Dictionary full

3 Has incorrect address mode
4 Is not unigue

6 Disg range or Tape range

7 Full stack

B Disc error or Tape error
17 Compilaticon only: use in definition
18 Execution only

15 Conditionals not paired

20 Definition not finished

21 In protected dietionpary

22 Use only when loading

23 OEf current editing screen
24 Declare vocabulary

The error message numbers can be restored by executing 0 WARNING!
Users should not be inhibited by error message 1 Empty stack.
This error is easily made and often made deliberately by Forth
users to check that the stack is actually empty at a particular
time,

QPERATION
Loading the Language

Before the language can be loaded, space must be created in the
MSX store. This may be done using the CLEAR statement. After
this the language may be loaded using the BLOAD command.

The loading procedure is therefore:—

i} CLEAR 200,&HB7FF (RETURN)

(i1) BLOAD "KFORTH",R (RETURN)

When this has been successfully achieved the heading title “KUMA
FORTH (c¢) D. Williams, Z80 FIG FORTH 1.1" will appear together
with a cursor indicating that the machine is waiting for input.

It should ke noted that the resident BASIC and the FORTH co-exist
in the machine, It is possible to exit back to the BASIC by
using the command BYE and back again +to the FORTH using the
command DEFUSR=&HBR00:A=USR{{).

Since FORTH is an interactive language it is ready for use as
500n as it is leaded, The tutorial section ‘Using FORTH® may be
read at this point if the user wishes to try out the language
before reading about the tape and printer facilities.

Using a Printer

An Epson MX80 F/T printer driver is installed and is enabled by
storing a non zero value in the variable EPRINT. This can be
done by executing 1 EPRINT ! or by control P. The printer is
turned off by 0 EPRINT! or a second control P. When the printer

iz enabled, everything output to the screen i8 echoed to the
printer. This is a very convenient way of producing listings and
other cutputs. If a different form of output control is regquired
or a different printer driver needed +¢hen a user supplied
subroutine may be installed. This sheould be placed in the
dictionary starting at the dictionary pointer given by HERE,
Space should be reserved in the dictionary using ALLOT: 30
ALLOT reserves 30 bytes, The subroutine should be called from
SFC6 hex where the address after the call instruction CD must be
altered appropriately. fThe character te be output is supplied in
the A register in Sharp normal code and the wvalues of
the IX and IY registers must be preserved. Any other register
may be used and the subroutine must end with the return
instruction C9.

Tape Operation

(N.B, for successful operation of the tape interface provided it
is necessary that a tape recorder with a ‘remote” facility be
used. }

The tape may be used te store programs and data, however, rather
than providing separate files on tape such as in BASIC, FORTH
considers the tape to be an extension of the memory inside the
machine. To achieve this the tape is divided up intec numbered
blocks each capable of storing l024 bytres of data. Each block
contains a header of the form SCRNEnnn {where nnn is the bleock
number), the lk body and a checksum.

Before a tape can be used it must first of all be formatted 1like
a disc. To do this put a blank tape in the recorder and press

the record button. Then execute the word FORMAT, This wil]
cause the machine to write 16 hlank files ento the tape. The
system will return with the word OK when this has been
completed, If a different number of files is regquired ({for

instance if a longer tape 1s used) the variable BLOCKS/TAPE may
be changed using a sequence such as 32 BLOCKS/TAPEL for 32 blocks
before FORMAT iz exectued.

Buffers are provided in store which are used for +the temporary
storage of blocks. When the user wishes to access 3 block, he
specifies it by number. If the appropriate block is not already
resident in a buffer, it will be automatically fetched from tape
and placed in one, Cnee in a buffer the bleck may be read oar
modified just like normal memory. If any changes are made to the
Block it is marked as updated so that later on theze changes cah
be rewritten back onto tape. The blocks are most often used for
the storage of text consigting of FORTH definitions and programs
but can be used for the storage of any kind of data. Blocks that
are used for text are normally referred to as screens,

This form of storage mechanism implements the wvirtual memory
system described in the next section,

The language tape supplied, in fact, contains B plocks situated
immediately after the language file itself. Ab an example of how
to use the tape system these can be examined as follows.

Wwith blocks 4 and 5 rasident try 1 WARNING !. This will replace
the error message numbers with messages on screens 4 and 5. The
numbers can be restorad by 0 WARNIRG !.

Updating Dhlocks may pbe achieved in the following manner.
Assuming that SCreen 1 from the language tape i available ({(load
it 1if necessary! type 1 LIST UPDARTE. Type STATUS and hlock 1
will be shown as updated. pewind and remove the language tape
and insert the newly formatted text tape. Type SFLUSH. A prompt
will appear to rewind the tape (not necessary o this occasion)
and PLAY. The tape will be searched until; the header of the
hlock to be updated 1is found. Press STOP when prompted then
press record followed by any key. The blank data part of the
bhlock will be averwritten with a cob¥ of the block on the
language tape. eTATUS will show block 1 still resident but no
longer updated.

This covers all the assential elements oOn usihg the tape virtual
memory S$ystem. Usually only one tape is inveolved and the hlock
peing saved has been created by the user uging the editor
commands which automatically mark the block in guestien as saved
using SFLUSH. saveral blocks can be in an updated form at one
time and saved using SFLUSH. A block can be overwritten on tape
any number of times allowing a large program covering several
hlocks to be developed and edited in small steps. Note that if
the buffers became full the user will be prompted to save any
updated screens; they will not be lost. Always use SFLUSH at the
and of a session to ensure that any updated screens or blocks are
written to tape.

There is one limitation with the tape system. In order to allow
the sequential reading of blocks without need for the user to
press a key for every block, the systenm assumes that the tape
transport is in play mede. This is normally the case. However,
it is possible that if the buffers are full when a block is to be
read and the next one to be used is marked updated, then the new
block can be read. The problem this causes is that at the end of
rewriting the system will assume that the tape is in play mede
when it starts to search for the new hlock header. However the
tape will still be in record mode and left unchanged would
averwrite data on the tape.

This may be overcome in two ways. The best way is to keep an eye
on the status of the buffers using STATUS and to regularly use
SFLUSH (you ought to be doing this anyway!). Alternatively
recognise this when it happens (detected by the fact that the
system prompts you to record when you are expecting it to read)
and to ensure that you manually press the STOP key after the
recording has taken place and then press the play-. There is a
gap between files wifh a leader tone so as long as you stop the
recording within a few seconds there should be no problem.

Tape Virtual Memory Sysatem

The object of the tape virtual memery system is to make a tape.
as far as possible, an extension of the random access mMemory.
The tape is divided into numbered blocks, each of 1044 bytes or
1K. The blocksd are most often used for the storage of tfext
consisting of Forth word definiticns and programs put can be used
for the storage of any type of data,. A block used for the
storage of text is usually called a screen.

when a block is referenced the user is prompted to load it from
tape and it is stored in an area of the random access Memory
called a buffer. There are six buffers each capable of holding
one block. Once a block is resident in a buffer its contents
carn easily be referred to and altered by a proegram. If the
contents are altered then the block 1s marked as updated.
Instead of the explicit command to save a particular block the
word FLUSH will cause the user to be prompted through the
process of saving all the bleocks that have been updated. & hlock
is saved by overwriting the existing version on tape so that the
blocks on tape are always current.

Each tape used for the storage of blocks must first be formatted.
The word FORMAT writes sixteen blank 1024 byte blocks on a tape
numbered from one. The number of blocks written can be alterd by
changing +the value of the variable BLOCKS/TAPE, which is
initially sixteen. Each block is represented on tape as a
numbered header followed by 1024 bytes of data. The header 1is
used to locate the block for both loading and saving. When a
plock is saved in updated form only the data part, which is found
by locating the header, is overwritten.

A block is accessed by the sequence n BLOCK which will prompt
the user to load block number n from tape it is is not already in
a buffer. The adress of the first byte of the block will be left
on the stack and any byte in the block can then be accessed Dby
adding an offset +to this address.

whenever the contents of a block are modified the word UPDATE
sets the sign bit in the status cell associated with the buffer
which contains the most recently referenced block. UFDATE
should be included in the definition of any word which modifies
the contents of a block.

An important use of hlocks is for the storage of source text
allowing word definitions and programs to be modified and
recompiled when required. Blocks containing source text, called
screens, are displayed using n LIST. The test can be edited using
the worde of the EDITOR vocabulary. Any editor word which alters
text on a screen will automatically mark it as updated.

Two words, SFLUSH and SCOPY, replace the more usual Forth wordsa

FLUSH and COFY and have heen designed for tape systems. SFLUSH
prompts the user through the process of saving any updated blacks
on tape leaving them stored in the buffers but no longer marked

as updated. This is meore convenient than FLUSH which removes
blocks from the buffers 5o that they must be reloaded when
required again. The sequence 7 12 SCOPY will alter the number of
gscreen 7 in the buffers to 12 and mark it as updatd so that it
will be written to block 12 on tape the next time SFLUSH is used.

any word which accesses a block or screen will prompt fer it to
be leaded from tape unless it is already in a buffer. Words such
as INDEX and TRIAD which access several blocks in sequence will
automatically load blocks after the first that they use. The
game applies to screens containing --> (next screen) when they
are compiled using LOAD.

The &Bix buffers occupy the highest memcory used by the language.
Bach buffer consists of a status cell (two bytes), 1024 bytes of
data capable of holding one block and two bytes containing zero
which are used as end of block markers if the block in the buffer
contains source text. The status cell contains the number of the
block in the buffer or zero if the buffer is unused. The signbit
of the status cell is set if the block in the buffer has Dbeen

updated. The word STATUS lists for each of the s5ix buffers the
address of the status cell, its contents and whether the block in
the buffer has been updatd. Thisz word is purely to aid the user

of a tape system; the segquence n BLOCK should always be used to
obtain the address of the first byte of a block irrespective of
which buffer it happens to be in.

The tape virtual memory system is an emulation of the disc system
referred to in published material on Forth. The operation of a
disc system and some other details of virtual memory are giveh in
the subsection entitled Virtual Memory System.

Using Forth

When Forth is loaded the message “Z80 FIG FORTH 1.1 comes up on
the =creen together with the cursor. Forth 1s a naturally
interactive language s it can be used immediately simply by
typing instructicns at the keyboard.

Type 4 5 + , then press return.
4 5 + . 9 OK

Each number or operator must be separated from others by at least
ane space but extra spaces may be used freely. This is a general

Tule in Forth. The rasult 9 should be printed on the screen
followed by OK. Each token such as 5 and + is treated in the
Same wWay. First a list called the dictionary is searched to see

if the token is the name of a word, which is the name given to
operators in Forth. Then if the token is not a word it 1s tested
to see 1f it is a number. If it is neither a word nor a number
it is rejected. Words such as + and . are exacuted. Numbers
such as 4 and 5 are placed on the stack which is a temporary
store.

The example input line is processed in the following way. The
nurber 4 does not appear in the dictionary but is a valid number,
so 1t is placed on the stack. The same applies to 5 . + ig a
Forth word which adds the first twoe stack entries and replaced
both with the result. The word . proncunced dot prints the first
stack entry which is now 9. The message QK is then printed to
show that the execution of the line is complete and that no
errors have been detected.

Stack

When a number is entered it is plared on the stack, which is a
temporary store arranged so that the last item placed in it is

the first out when any item is removed. The next number entered
cah be visualised as pushing down the first and in its turn
bacoming the first stack entry. The number entered first is now

the second stack entry. This organisation is sometimes described
as last in first out.

23 4 OK

When the numberes 2 3 and 4 are entered they are put on the stack
with 4 as the firxst stack entry because it was entered last.
Each time dot is used one number is removed from the stack and

printed. With wvery few exceptions Forth words remove their
arguments from the stack when they are used, Other words are
used toc make coples of numbers on the stack. After the three

numbers have been printed the stack is empty because there are no
‘more items on it. If dot is used when the stack is empty then an
error messadge results. Any operation or seguence of operations
which cauwses the stack to empty will result im this error
messgage.

Arithmetic

Arithmetic 1in Forth is carried out using reverse polish notation

aor RPH. This is not as baffling as it sounds, Instead of
placing an arithmetic operator such as + between its operands
{called infix notation) operators follow their operands. Some

examples of postfix notation are given helow, together with infix
equivalents,

Postfix Infix

2 3 + 2+ 32
2 3 + 5L (2 + 3} * 5
3 5 % 2 + 2+ {3 * 5)

It should be apparent that the order of operations is always
explicit in RPN. No brackets or precedence rules are ever used.

Forth can be used as a calculator simply by entering arithmetic

in this postfix form. The calculations are carried out on the
stack.

10

Keyboard entry Stack contents

Z 2

3 3 2
+ 5

5 o5
* 25

The word + adds the first two stack entries and replaces them
with result. Similarly the word * (star) multiplies two numbers.
The result of the calculation 25 is leftr on the stack until
something iz done with it explicitly. It could be used 1in
another c¢alculation or by another Forth word. In this case 1t
can be printed using dot.

The use of a stack for arithmetic may well be new and unfamiliar.
The best approach initially is to think in terms of Jjust one
number on the stack at any one time. Each individual arithmetic
operation can then be entered in seguence.

1400 OK Start with 100. Enter it so that 100 is on the
stack

12 + OK add 12 to this number. 112 is on the stack.

14 / QK Divide by l14. The result B is on the stack

5 - OK subtract % leaving 3.

The division word / (called slash in Forth} is an example of an
operation which gives different results depending which way it is
done. For example 112 14/ is & pbut 14 112 is 0.125. The order
in which numbers are entered when ncn commutative words like /
are used is guite natural.

Once postiix notation and the use of the stack become more
familiar then wider use of the stack can be made. There are a
number of words in Forth for this purpose.

Words and their use

Some words have already been met. + - * / and . are all words.
Like nearly all words in Forth they can he used simply by typing
them in. .

Fach word has a name made up of letters and other characters.
By conventicn letters used in word names are always upper case
letters. Wword names are chozen to indicate what the word does.
Many symbols used in English punctuation are used as the names of
frequently used words and these include . , : ;7 | and ?.

Each Forth system initially contains about 200 words. The user
does not have to learn all these words to make effective use af
the language but only those that are of interegt or value to an

application. Later it is ewxplained how to add new words chosen
and named by the operator. ¥or the moment, though, only words
already in the language can be used. Tf the name of a word not

in the core language is used then it will be rejected followed by

11

? MSG O to show 1t has not been recognised.

Number bases

Forth c¢an operate in any humber base. For example the word
HEX alters the base to hexadecimal or base l6. When this word has
been usad then numbers are entered in hex and results printed out
in hex. The base can be changed at any time so numbers can be
entered in one base and printed out in another allowing
CONVersions.

HEX 9 7 + 10 OK Nine and Seven add up to 10 in hex
13 DECIMAT, . 19 OK 13 hex is 16 + 3 or 19 in decimal

HEX and DECIMAL are words which change the base in which Forth
oparates.

Forth is always in decimal initially. When bases higher than 10

are used the numbers after 9 are A B C ,.,.. using letters of the
alphabet as necessary. When bhases lower than 10 are used then
only digits from zere to one less than the base are valid. In

binary, for example, only 0 and 1 are numbers.

Bases other than decimal and hex are obtained by altering the
value of the base variable BASE. A word! {pronounced store) 1is
used to do this.

3 BASE ! #).4 Stores 3 at BASE altering base to 3

101 EBASE ! QK Stores 101 base 3 {10 decimal) at
BASE

BASE is5 an example of a variable, The use of wvariables 1is

described in more detail later in the section on constants and
variables.

Core language words

The initial word set in Forth is sometimes referred toc as the
core language. These words fall into three categories. First
the hasic huilding blocks which are used to make up higher levels
of the language and user defined words. There are about 40 of
these and they perform such functions as adding twoc numbers and
storing a number in the memory of the computer. Then there are a
number of specialised words which interpret what is typed at the
keyboard by the user. Finally there are some higher level words
which perform more complex tasks for the user. Bome of the words
in the first and third grcoups are shown below.

Two words which control the display are SPACE and CR. These
words output a space and a linefeed to the screen respectively.
A word S5PACES (separate from SPACE) takes one number from the
stack and outputs that number of spaces. § SPFACES outputs 8
spaces and 50 on. More generally a word EMIT takes a number from
the stack and interprets it as an ASCII code value which is used

12

to print the appropriate ASCII character. HEX 41 EMIT prints the
letter A.

There are several words which perform the ugual arithmetical and
logical £functions on numbers. MINUS reverses the sign of a
number so 27 MINUS . will print -27. ABS forms the absolute wvalue
of a number so 27 ABS. and -27 ABS. will both print 27. Logical
functions include AND OR and XOR and these operate on a bit by
bit basis so 2 1 OR . will print 3.

Numbers and other values can be compared using relaticnal words.,
These words return One [truel if the relational test is satisfied
and zero {false) if it i8 not. These truth values are called
flags and can be nced to make decisions as explained later in the
section on conditicnal and loop constructs. Equality is tested
by the word = [(equal)} 8o 5 5§ =, will print 1 indicating true and

5 4 = . will print O indicating false. The words < and > make
the tests less than and greater than respectively.

211 the words in the language are listed in response to VLIST.
The functions of all these words are described in the glosearies
later in this guide.

Structure of Forth

A great deal has been gaid about the stack in Forth. Indeed
there are two stacks used in the language; the parameter or data
stack which has already been discussed and a second called the
return stack. This latter stack normally operates without
requiring the intervention of the user although its use 18
valuabhle for certain purposes.

The parameter or data stack (often just called the stack) 18
fundemental to Forth. It 1is the principal means of communication
petween the words and so between dif ferent parts of a Forth
program, It is what makes Forth a modular and context free
language. Context free means that each operation or word is
executed in the same way whatever else is going on at the Eame
time. Values or parameters needed by each word can be found on
the stack and results are placed on the stack ready to he used by
the next word.

The user is completely responsible for making use of and managing
the stack. Many words reguire parameters to be on the stack when
they are used and also leave the results of their operation on
the stack . Whenever a word is formally described its effect on
the stack is always specified. MNumbexrs are put on the stack by
typing them in or writing them as part of the text of a progrxam.
Hearly all words coperate on only the first two or three numpers
oan the stack. HNumbers below these are unaffected. A series of
etack manipulation words exist to pring numbers 1into the
xequired position near the top of the stack so they can be used.
and to copy numbers so ihat they can be used more than once.
FPinally results of a series of operations are left on the stack

13

for printing out or passing to another program.

Although numbers have been referred to as the most commen i.tems
oh the stack a variety of different data types are dealt wath on
the stack. Each stack entry consists of two bytes together and
since a byte is eight bits the stack is said to be 16 hits wide.
Into these 16 bits can be put numbers, addresses, hoolean flags,
ASCIT characters and any other type of data that wil) fit, "TWO
stack entries can be used together to make 32 bits and this
arrangement is used, for example, for double precision numbers.
For other date types which would reguire several =stack entries
together such as a string it is more convenient to store the data
in memory and manipulate its address on the stack.

For the mean time it can be assumed that all references to stack
entries mean single entries of 16 hits. Most commonly those will
be in the following categories:

integer numbers between -32768 and +32767

boolean flags where zero meang false and any non zero value means
true

characters where the lowest seven bits are the ASCIT code of

the character

addresses of memory locations.

Forth is often described as a typeless language. This means that
whether a stack entry is an integer number of a character depends
oh the context 1in which it is found. 1t is entirely the
responsibility of the user to keep track of the meaning cf stack
entries. This means both {reedom from restrictions on what can
and cannet be done with different types of data and the
respongibility for avoiding errors by confusing different types
of data.

In +the next section the most commonly used stack manipulation
words are introduced. These words are used to move values around
the stack so that several words can be used together. Immediately
after folows an introduction to defining new Forth words chosen
by the user.

Stack manipulation words

These words are introduced here becausc they are among the most
frequently used words 1in Forth. In addition to its use for
arithmetic the stack is used extensively for passing data from
one Forth word to ancther.

Nearly all Forth words remove their arguments from the stack when
they are used. For example if . 1is used to print the number on
the top of the stack then once the number has becn printed it is
no longer on the stack. In order to do more than one thing with
a number a copy has to be made so that one operation can use the
numper and one cah use the copy. This is accomplished by the
word DUP which duplicates whatever number is on top of the stack.
Using DUP followed by . the number on top of the stack can be

14

examined without altering it. DUP makes a copy and . printes the
copy leaving the original number unaltered.

Below is shown the effect of DUP and some other words on a stack
on which the numbers 5 4 3 2 1 have been placed by typing them
in. The number 1 is on top of the stack because it was typed
last; 2 is' the second stack entry and so oh.

Word Stack contents Stack contents
bafore after

DUP 1 2 3 45 11 2 345

SWAF 1 23 465 21 3 45

OVER 1 2 3 45 21 2 3405

2DUF 1 2 3 465 1 21 2 3 45

DROF 1 2 3 45 2 2 4 5 '

SWAP reverses the order of the first twe numbers on the stack so
that the second number can be used easily. wWhen a copy of the
gsecond number is needed then OVER provides a2 more convenlent
solution +that SWAP DUP because the existing first and seccond
entries are not moved. 2DUP copies the first and second entries
allowing a comparison for example and is the exact equivalent of
OVER OVER. Finally DEDP is used to discard unwanted stack
entries. It is important that this is done otherwise the stack
will build up indefinitely and eventually overwrite the
language.

These words can easily be used to make arithmetic operations
more comprehensive. For example the square of a number can be
produced by DUP * which multiplies the number by itself.

Defining new words

The cuke of a pumber can be calculated in the felowing way.,

Keyboard entry Stack contents

4 ' 4

DOP DUOP 4 4 4

* 16 4

* E4

. 64 0K
The sequence DUF DUP * * takes the first stack entry and returns
the cube eof that number. 50 a new word CUBE can be made which
will calculate the cube of any number. The number is taken from
the stack and the cube of the number is returned to the stack.
The word: ([colon) is used to form the new word CUBE and colon is

called a defining word. :

+ CUBE DUF DUP * * ; OK

1%

This line, which should by typed in as it i1s written, is referred
to as a definition, The definition starts with celon. After :
comes the name of the new word CUBE, which may be formed from any
letters, numbers and cother ASCII characters except a space., If a
number is wused alone though its role as a word name will
effectively prevent its Use as a number so at least ohe non
numeric character is usually included.

The words DUF DUP * * are not exectued in the ugual way. Instead
they are compiled into the definition of the new word CUEE.
Another word semi, which is entered ags ; 1s used to end the
definition. The new word CUBE is then complete and the language
returns to the interactive mode which means that other KkKeywords
typed in will be executed and not compiled into CUBE. The message
0¥ shows that CUBE has been accepted and that the definition did
not contain any errors.

The word CUBE is now ready for use.

3 CUBE . 27 0K
7 CUBE . 343 OK

This new word behaves exactly as DUP DUP * * do when typed 1in
successively.

Number literals

When a number appears in a colon definition it is compiled into
the new word and is called a literal. When the word containing
the number literal is executed the number is pushed to the stack.

: ZCUBE CUBE 2 * : OK
3 ZCUBE . 54 Ok

This example uses the previously defined word CUBE. Building up
definiticons in this way is the essence of using Forth, When
2CUBE 1is executed CUBE leaves the cube as the first stack entry.
The number 2 is pushed to the stack and * multiplies the two
numbers at the top of the stack, leaving the result on the stack.

String literals

Strings or messages can be made part of a word. When the word is
used the string is printed on the screen.

: CUBE. CUBE CR ." Cube is " SPACE . ; oK

5 CUBE.

Cube is 125 OK
Here the new word is called CUBE., . The suffix . suggests it
prints its answer. CUBE is used again tc calculate the cube and
leaves it on the stack. CR feeds a linae. The word .* compiles
the string which follows it until the closing quote * 1inte the
word. .7 1is rproncunced dot guote. SPACE leaves a space and

16

finally . prints the result

A string literal may be the only element of a word which is then
used in other word definitions.

: AS " A frequently used string " ; ©OK
AS A frequently used string OK

There are many more flexible ways of using strings in Porth and
some are discussed later on.

New words and the stack

The origimal definition of CUBE could have been designed to print
itz result immediately by including . in the definiticn. This
would have been the easiest thing to do if the caleculation of g
few cubes was all that the user required. If a word returns its
result to the stack then it becomes a much more flexible
instrument. It can be used teo convert the first stack entry to
its cube in any context. Other numbers can be on the stack as
gecond and subsequent entries and they will not be affected by
CUBE. Once the user has defined CUBE he no longer has to worry
over the details of calculating cubes nor will he make errors
over them. These principles become important when several words
are used together to make more powerful words until che word is
the program that meets the user’s application,

Three other points are helpful when defining words. Words should
be given meaningful and descriptive names. Definitions should be
kept short and simple so that complex functions are formed from
several words rather than one and each word ‘hides® a distinct

operation, Finally words can be tested by putting dummy
arguments on the stack and checking the operation of the word, so
bringing to light errors and limitations. Below is the program

for testing CUBE.

0 CUEBE . 0 OK Zero gives correct result
-2 CUOBE . -8 OE Negative numbers give correct result
32 CUBE . —32768 QK Overflow in single precision

arithmetic [(use double precision
for numbers higher than 31)

Errors in definitions

A correct definition is indicated by the message OK or the
message IS NOT UNIQUE (or MSG # 43). This latter message is not
an eryor message in the usual sense but simply shows that the
name chosen for the new word is alse the pname of an existing
word. This i3 perfectly permisaible and any name can be reused,
including those of words in the core language., A consequence of
reusing a name though, is that when that name is used only the
most recent hame will effectively be lost. Wards using these
earlier words will not be affected though. There 1s a means of

17

using the same word name more than once for different words and
making all the different versions accessible. This is called
vocabulary centrcl and 1s explained later.

only words already in the dictionary and numbers and strings can
be used 1in definiticns. A missed space will make a token
unrecognisable and result in such error messages as:;CUBE 7 .
Stack wunderflow during a definition will be detected as an error.
If these or other errors occur during compilation of a new word
then the partially completed word will be erased.

Discarding unwanted words

An unwanted word is removed using FORGET followed by the name of
the word to be removed.

FORGET CUBE QK

FORGET causes the removal of the word that is forgotten and all
subsequent entries. However if there is more than one word with
the name which follows FORGET then only the most recently entered
version is forgotton. In normal use attempts to forget core
language worda atre rejected although this restriction can he
removed if required as is usually the ¢ase in Forth. All words
outside the core language are forgotten when COLD is used.

Conditional and loop constructs

Forth has a rich set of conditicnal and looping constructs.
Theze are available only within compiled definitions of words.

s with most languages the boolean values true and false which
govern the operation of these constructs are defined as follows:

false ZBro
true any nen zero value

Any number on the stack can be used as a truth value and 1is
referred to as a flag on the stack. There are a number of words
which perform relational tests such as camparing two numbers to
see which is larger or seeing if a number is equal to Zero., These
words leave a flag on the stack according to the rezult of the
test they have made. This flag can then he used by such
conditional words as IF and WHILE.

IF ENDIF

The simplest conditiconal construct in Forth is IF ENDIF.

: UNITY 1 = IF ." Unity " ENDIF :; OK
1l UNITY Unity OFK
7 UNITY QK

16

vhis example can be compared with the same program in a Pascal
like langquage.

PROCEDURE UNITY
IF X = 1 THEN |

WRITE “Unity")
ENDPROC

In Forth conditionals are expressed in a postfix form so the
words asscciated with a conditional operator such as IF or ENDIF
precede the operator instead of folowing it. There is no need for
brackets toc indicate the scope of the statements to be executed
if the conditional test is satisfied because ENDIF shows the end
of these statements. :

The word = {equals) is a relational operator which generates a
true flag if the two entries at the top of the stack are egual
and a false one if they are not. Here the first stack entry when
UNITY is used is compared to 1. The word IF takes the flag
formed by = from the stack. If this flag is a true non 2zero
value then the words between IF and ENDIF are executed; otherwise
they are not. Execution resumes unconditionally after ENDIF.

Every IF construct must be completed by an ENDIF in the same word
definition. A word@ ELSE c¢an be used to specify an alternative
set of words to be executed if the test made by IF is false.

: DUNITY2 1 = IF .® Unity™
ELSE ." Not unity"”
ENDIF : QX

If the flag on the stack examined by IF is true then only the
worda between IF and ELSE ara executed. If the flag ie false
then only the words between ELSE and ENDIF are executed. In
aither case execution resumes unconditionally after ENDIF.

The word THEN is provided and may be used inatead of the word
ENDIF wherever it occurs if the user prefers.

DO LOOFP
The finite loop structure DO LOOP is a simple but very valuable

structure. It takes two arguments from the stack, both integer
numerical values and not flags.

: IO0TA 10 O DO I . LOOP ; QK

IOTA 0123456789 OF,

The example word IOTA c¢ontains the major elements of this
construct. The word DO takes two entries from the stack. The
first stack entry (entered second} is the counting index of the
loop, usually just called the index. The second is referred to
ag the limit. Cn each passage through the loop the index i=s
incremented by one and compared with the limit. As soon as the
index equals the limit the leoop is no longer executed. Inside

15

the loop the word I places a copy of the index on the stack where
it can be used.

Each DO construct must be completed by a LOOP in the same word
definition. The index and limit may be any values. The limit is
written first because it ics more often passed as an argumentc.

+ CUBESs @ DO CR I DUF . CUBE . LOOF ; QK

4 CUBES

o0

11

2 8

i 27 oK

CUBES allows the generation of a cube table of any size. The CR
feeds a line after each number and its cube. T™wa copies of the
loop index I are made using I DUP. The first is printed and the

second cuked and printed.
BEGIN UNTIL

This structure is a lcop whose execution is contrelled by a flag
on the stack.

: COUNT 4 BEGIN DDP . 1+ DUF 3 = UNTIL DROF ; OK
COONT 4 56 7 8 QK

The BEGIN UNTIL lcoop is always executed at least once. At the
bottom of the loop UNTIL takes a flag from the stack. If this
flag is true the lcop terminates; if it is false the loop is
repeated until the flag is true. COUNT starts with a number on
the stack. This number is printed, incremented and compared with
g, The loop continues until the expression DUOP 9 = gives a true
result. The left over number is discarded by DROP which is used
to remove an unwanted number from the stack. Unwanted numbers
should always be removed or they will cause errors later in a
program,

BEGIN WHILE REPEAT

This loap complements the BEGIN UNTIL lecop by providing a looping
structure in which the rconditional test is made at the start of
the loop.

» COUNTZ 4 BEGINWN DUP 8 < WHILE DUFP . 1+ REPEAT DROP ; OK
COUNTZ 4 56 7 8H OK

The BEGIN WHILE REPEAT loop is a WHILE construct expressed in
postfix form. The conditional expression governing the execution
of the loop precedes WHILE and form a flag which WHILE takes from
the stack. If +this flag is true then the instructions up to
REPEAT are exscuted, a locop back to BEGIN occurs and the
conditional test between BEGIN and WHILE is repeated. Execution
of the loop continues until WHILE takes a false flag from the

20

stack. The loop may not be executed at all if the test is not
aatisfied the first time it is made.

Constants and Variables

Constants and variables are used in Forth to enable a value to be
referred to by name. Fewer ccnstants and variables are used
compared with other languages fer a similar application though,
as a general rule because Forth users have the stack and number
literals at their Qisposal.

A number literal can be used in only one word so if the same
value is +to be used by several words then it should be made a
constant. A constant should also be usged where giving a name to a
value makes a program easier to understand. As itz name suggests
a coenstant should usually ke used for numbers which de not alter
in value during a program. It is possible, none the less,
accasionally to alter the value of a constant.

During the execution of a program many numerical and other values
are generated which are temporary. The stack allows these wvalues
to be dealt with in Forth whereas in other languages wvariables
(or arrays) have to be created for each of them. Values which
are fundamental to a program or which are used at different times
should bke assigned as variables. wWhen this should be done is a
matter of judgement. A word which references a wvariable cannot
be used in isolation from the variable and so0 loses modularity.
Against this use of variables makes programs easier to understand
and less prone to errcr.

Defining constants and variables

Constants and variables are kept in the dictionary and have names
like other words. Instead of being defined using coclen though,
they have defining words of their own which are used a little
differently from calon.

12 CONSTAKNT DOZEN QK
57 VARIABLE HEINZ OK

A constant is defined with its wvalue which is 12 in this example.
A variable is supplied with its initial wvalue {57). These values
may be zero if no particular value is needed as an initial wvalue
but failure to specify some value will result in an error.
CONSTANT &and VARIABLE are defining words like colon but thedr
action 1s limited to the number which precedes them and the name
which fellows them and they do not cause other words to be
compiled and not executed in the way that colon does.
Immediately after the defining word comes the name of the new
constant or variable,

21

Using constants and variables
Using constants is easy and involves no new ideas.

DOZEN . 12 OF
: BAKERS DOZEN 1+ ; OK

When the name DOZEN is used the value of the constant is pushed
te the stack. It can be printed using . in the usual way. A
constant ¢an be incorporated into another word using its name.
The word 1+ in BAKERS adds one to the value left on the stack by
DOZEN and thus leaves 13 on the stack.

Variables operate a little differently from constants. A
variable can be thought of as a place where a value is kept and
g0 a variable pushes the address and not the value of the
variable. 1In order to recover the value of the variable the word
@ (fetch) is used. This word replaces the address with the value
stored at that address. Another word ! ({store) is used to place
a new value in the wvariable.

HEINZ B8 . 57 OK
€2 HEINZ ! OK
HEINZ @ . 62 OK

The user does not need to enter the address at any time; it is
always referred to by the name of the variable. The use of & and
! may appear tedious in isolation. They serve to make variables
more flexible in complex applicaticons. The word store takes the
place of the assignment operator in other languages. Instead of
writing HEINZ = &2 or HEINZ := 62 Forth uses 62 HEINZ ! .

: SOUP 41 HEINZ ! ; OK
: FISH 15 HEINZ ! : OK
: MEND HEINZ & . ; OK
FISH MENU 1% QK

If a large and apparently meaningless number is encountered when
using a variable it is probably the address of the variable and
indicates a forgotten @ . The address itself is usgeful in some
applications and is obtained simply by using the name of the
variable without @. The words & and ! can be used for any memory
location and not Jjust wvariables and are extremely useful
operators. There is a word ? which is defined as @ . and prints
the value of any memory location. It can be used with variables.

HEINZ 2 57 DK
Screen Editor

The editor is made uvup of Forth words which are used to create and
edit text. The text may consist of word definiticons and other
instructicns and is stored on screens of 1024 characters arranged
in 16 lines of 64 characters each. The screens are stored in the
blocks which the mass storage is divided into and referred to by

22

number. Screens 4 and 3 are usually reserved for error messages.
The relevant section entitled QPFERATICN should be consulted far

hardware and cperating system dependent details of diec drives
and other mass storage devices.

The MSX editor resides in the EDITOR vocabulary (see later for
details on vocabularies) and makes use of the screen editing
farcilities provided in the MSX ROM.

In order to edit a screen, type the word n EDIT where n ie the
screen number. If the screen is already resident in a buffer
then this will cause the secreen to be listed and the edit mode

entered. If not then the system will load it from the tape first.

In the case of a new screen it is advisable to use the word n
CLEAR first before using the word EDIT to ensure that the screen
is properly initialised. This will also cause the screen to be
lecaded if necessary. (As a short cut it is possible to trick the
system Iinto thinking that it haas already loaded a screen by
pressing CONTROL-STOP after the reading prompt. This will cause
error % 8 to occur and the reading operaticn te the aborted.
STATUS will reveal that the system thinks it has loaded the
SCreen. Typing in n CLEAR again will ensure that the screen is
initialised and you are ready for editing using EDIT. This short
cut can be useful if you wish to use a screen for a temporary
program that you dont want te save and vou dont have a tape to
hand!]

After listing, the system is in EDIT mode and the cursor controls
may be used to move around the screen and write or modify text on
any of the lines.

Each line is preceded with a line number. There must be at least
one space between the number and the text. When a line has been
typed it must be entered into the machine using the return key
Just like in BASIC, Be careful to remember this as it is easy to
think that the data is there because you can see it on the
sCcreen!

As just stated, lines consist of 64 characters. Unfortunately,
the MSX has a 40 line display. This means that potentially each
FORTH line can cccupy one and a half lines on the screen. During
typing i1if you wish to extend over the end of a line then the
following scheme should be used to overcome the peculiatrities
of the MSBX editor. Just prier to the end of the line go into
insert mode and insert some gpaces or text . This will cause the
current line to be extended to two lines by scrolling the lines
below down one position. You may then centinue typing the line
a4s normal. Note that only 64 characters will be accepted when
you press return. Any in excess of this will be ignored.

When you have finished editing press CONTROL-STOP this will cause

you teo exit the editing mode and the OF prompt will return. For
neatness it 18 advisible to scroll to the bottom of the screen
before doing this. I1f any changes have been made to +the text

23

then the screen will be marked as UPDATED. This may be checked
using S8TATUS if desired. Remember to use FLUSH or SFLUSH to
record your changes on the tape before awitching the machine off
ar axecuting any untried program that may crash the machine!

When a screen is getting full, it will not be possible to display
the whole of the screen in one go. To allow editing of the parts
that screll off the top when the EDIT command i1is used, the user
may press any Kkey while the screen is listing. This will cause
the rest of the listing to be aborted and the edit mode to be
entered as normal.

There is nothing special about the line numbers on the screen.
They are simply there as a prompt te the user. This can be used
to advantage during editing. If you wish to move or reorder
lines on the screen simply type over the current line number with
a new one, Remember to press return afterwards to record the
change. The only limitations are that the line number must be
between 0 & 15 and there must be a space bewtween the number and
the text. Quiting and re-listing the screen with EDIT allows yau
to exXxtensively modify screens without getting confused.

One point should be noted whilst writing programs. FORTH treats
text screens as a conktinuous block of 1024 characters, The
separate lines are purely for users convenience. This means that
there is no inferred space at the end of cne line and the
beginning of the next. 1f a FORTH word uses the last character
pogition of a line be sure to leave a space at the start of the
next to ensure that the interpreter doesnt run twe words tegether
and cause an €rror.

Screens may be moved arcund using SCOFPY. The sequence 50 55
SCOPY copies screen 50 to 55,

There 1is a direct mapping between screens and the blocks of the
virtual memcry system. For the moment the two may be regarded as
SYHONymMous . There is no screen or block numbered zero. Further
details of the relaticnship between the virtual memory system and
text screens are given in the subsection of Forth Technigues
entitled Virtual Memcry System,

Using Text Screens

The purpose of text s¢reens is to allow colon variable constant
and other definitions and instructions to be stored in permanent
form. Several of these may make up a complete program covering
several screens.

In general any text which makes up a valid executable input line
can be stored on a screen. When the screen is compiled (called
loading in Forth) the text on it is treated in exactly the same
way as input lines are treated. A screen 12 loaded by typing n
LOAD where n is the screen number. If the text on a screen
containe an error it will be reported in the same way that an

24

error in a input line is reported. In additicon the editor word
WHERE will show its position on the screen,

Any of the example word definitions given earlier in this
section, such as CUBE, may be edited on te a screen and then
loaded. Select an unused screen such as screen 50. Using the
editor, first clear it with CLERR (this is important), then edit
the definition on to it. Next lecad the screen by typing 50 LOAD.
If any error occurs (except MSG 4) correct the text uszing the
editor . It will be recalled that error MSG 4 simply
indicates that a word name has been used more than once which is
unimportant in this context.

A comment may be placed on a screen by enclosing it in round
brackets (and). The usual space must be left between the
brackets and the comment text. Text within the brackets will he
ignored when the screen is loaded.

When related texr covers more than one sereen, screens may be

linked by -—-> pronounced next screen. If this word is placed con
secreaen 50, at the end of the text on that screen, then the
sequence 50 LOAD will also load screen 51. This may be extended
indefinitely over consecutive screens. One screen may alsc load
another by a LOAD instruction. For example 52 LOAD could be
written on screen 50, One screen may contain instructions to

load several others and is then referred to as a 1lcad screen.
This sort of load instruction should not be chained through
several screens though.

Interpretation of the text on a screen is ended by ;8 or in any
cade at the end of the screen.

A title in the form of a comment is usually placed on line 0 of
each B8creen and this allows screens to be searched using INDEX.
For example 1 5 INDEX lists the first lines of screens 1 to 5.

Forth Techniques

This section contains more detailed explanaticons of some of the
techniques used in Forth programming.

Parameter and Return Stacks

The parameter stack is& the stack explicitly available to the user
for the temporary storage of data and passing parameters between
words. It grows dowhwards in memory from its base, whose
address is stored in the user variable 50 (szero). The parameter
stack shares an area of memory with +the dictionary, the
dictionary ogrowing upwards from low memory and +the parameter
Etack growing downwards from high memory, Usually several
rhousand bytes separate the two s¢0 there is room for the
parameter stack to grow to any practicable depth.

25

Generally only a few items should be manipulated on the parameter
stack at any one time so that the parameter lists for individual
words can be kept simple and easy tao use. Fach word should leave
only defined parameters on the stack; other values should be
discarded or they will clutter the stack and make errcrs
difficult tc avoid. Two types of error are likely to occur when
using the stack. If the stack grows so large it encroaches on
the dictionary it is said to have overflowed whereas if the stack
iz empty and an attempt 1s made Lo remove a value from it then it
is said to have underflowed. The latter errcr 15 much more
common and is very easily made. The stack is tested for overflow
and underflow after each word is executed but not during the
execution of a word. This makes execution fast but places on the
user the responsibility of ensuring that appropriate parameters
are on the stack for each word to use.

The wvalue of the stack pointer, the address of the first stack
entry is placed on the stack by SPd and the sequence 5F@ . will
print the value of the stack polnter while SP! clears the satack.

There is a second stack in Forth called the return stack. This
stack, which is used by the language for the storage of return
addresses gensrated when one word calls another, can also be used
for the temporary storage of values. There are some restrictions
on this use but it adds a valuable degree of flexibility to the
parameter stack.

For example if there are two items on the parameter stack and the
second entry is to be used for some purpose the word SWAP 1is
often used to make it accessible. hnother way is to use >R {to
R) to move the first parameter stack entry to the return stack
leaving what was the second parameter stack entry on top. The
value now on the return stack can also ke accessed by the word R
which copies it to the parameter stack without altering the
return stack.

R rcan be used any number of times in a word so the returh stack
value can conveniently be used several times in a loop for
example. The value is recovered by R? which moves one value from
fthe return stack to the parameter stack. A number of wvalues can
be ghuffled between the two stacks in this way.

The principle restriction is the »R and R> may only be used in a
word definition and each >R must be balanced by and R>. No net
changes to the return stack may be made by a word and the return
stack cannot be used to pass values betwen words. Additional
care is needed when using these words inside a DO LOOF construct
because the index and limit are stored on the return stack. The
word R which merely copies the first return stack entry to the
parameter stack withour altering the return stack may be used
freely.

The return stack grows downwards in memory from its base which is

stored in the user variable RO {rzero]. The wvalue of the return
stack pointer is placed on the parameter stack by RFE.

26

gelational and Logical Operators

Phese operators are used to make comparisons and tests, returning
flags which are most cften used by the conditional and looping
gtructures. There are a number of words which compare two single

precisicn numhers on the stack. All of these except U< assume
the numbers being compared to be signed. U< is used to compare
unsigned numbers, especially memory addresses. There are two

unary relational operators, O= and 0<. O= can be used as a
logical NOT to reverse the state of a flag and 0O¢ to tesat the
sign bit of a number.

The flags from separate tests can ke combined using the logical
operators AND, OR and XOR. For example the sequence XLEN B 1 <
xLEN @ 16 > OR where XLEN is a variable will generate a flag
which will be true if the value of XLENW is either less than one
or greater than sixteen. More complex conditional statements can
he written inp this way.

A little care sometimes has to he taken with logical operators.
The flags returned explicitly by relational operators always use
one to denote a true result. rombining two or more af these
flags with logical cperators such as AND will give the expected
result. But if the flag is generated by an implicit test such as
- for ineguality Dbetween two numbers then a (perfectly wvalid)
true result might be expressed as a non zeroc value other than
one. Since the logical operators work on a hit by bit basis this
may give an erronecus result. For example 1 1 AND is 1 but 1 2
AND is 0. 1f a logical cperator is being used then a test such
as 41 - should be written as 41 = 0=.

Conditional and Leoping Constructs
This sub section includes illustrations of the applications of

the conditional and looping constructs to dumping the contents of
memory in hex format.

HEX
: BYTES po I C@ 2 .R SPACE LOOP ;
. LINE CR DUP 0 5 D.R SPACE
DUF B + SWAP BYTES ;
: DUMP BEX DUP B0 + SWAP

po I LINE ?TERMIMAL
IF LEAVE ENDIF & +LOOP ;
DUMP2 HYEX BEGIN DUP LIKE 8 +
2TERMIRAL UNTIL DROP ;

The first word BYTES illustrated a DO LOOP construct where both
the index and limit are supplied from cutside the word via the
stack. The word .R uses two stack entries printing the second as
a signed number right adjusted in a field whose width is the
first stack entry. Thus I €@ 2 .R SPACE fetches the byte whose

27

address is the wvalue of the index I and prints it suitable
formatted. BYTES can be tested by a sequence such as 8 0 BYTES
which would dump the first eight bytes of memory.

LINE dumps eight bytes on a line starting with an address taken
from the stack. The address itself is printed at the start of
the line in a field cof five spaces followed by a space, AR zero
is pushed in front of a copy of the address on the stack =so¢ that
all addresses, including those above 8000H, c¢an be printed as
positive double precision numbers, The word D.R cutputs a signed
double precision numbher right adjusted in a field of spaces whose
width is the first stack entry. DUP 8 + SWAP form an index (the
address) and a limit (the address plus eight) on the stack for
BYTES.

DUMF uses the DO +LO0OP construct. This behaves similarly to the
DO LOCQP construct except that on sach passage through the loop
+LOOP takes a value from the stack which is used to increment the
loop index whereas LOOP dees not take a value from the stack and

always increments the loocp index by one, The value taken from
the stack by +LOOF may be eilther positive or negative. DUMPF
takes an address from the stack and dumps 128 hytes. After each

line of eight bytes the index of the loop, used by LINE, is
incremented by eight,

The word HEX at the start of the definition ensures that the
output 1s always expressed in hex although the starting address
may ke specified in any base,. DUMF alsc shows the use o©of the
word LEAVE which terminates a lcop the next time LOQP or +LOOP is
reached, irrespective of the number of times the loop has been
executed,

The word ?TERMINAL returns & true flag only 1f a key has been
pressed. This flag is tested by IF and LEAVE iz executed only if

the flag is true. When DUMP is used pressing any key causes the
dump te stop at the end of the current line. In this example an
IF ENDIF clause 1is nested inside a BD LOOP clause. The

conditional ceénstructs may all be nested in this way but the
acope of one construct must be wholly contained by the construct
within which it is8 nested. For example DO DO LOOP LOOP and IF DO
LOOF ENDIF are valid seguences but IF DO ENDIF LOQP is not.
Several levels of nesting may be used although it is best to use
more and shorter word definitions and fewer levels of nesting
within a word definition wherever possible,

DUMPZ shows how LINE can be placed inside a BEGIN UNTIL locp. On
each passage through the loop LINE uses a copy of the current
value of the address and the address is incremented by eight,
The flag generated by ?TERMINAL is tesgsted by UNTIL and the loap
1& executed until this flag is true, Memocry is dumped
indefinitely until a key is pressed.

The second set of examples shown here is concerned with dumping

memory in ASCII format. The main proklem to solve i1s the
treatment cof control and other non printing characters.

28

HEX

¢ ASCBYTE DUP 20 < OVER 7F = OR

IF DROP 2E EMIT

ELSE EMIT

- ENDIF SPACE ;

. ABYTES no SPACE I C@ ASCRBYTE LOOP ;
: ALINE CR DUP O 5 D.R SPACE

DUF B + SWAP ABYTES ;
. ADUME DUP 80 + SWAP

o I ALINE 2?TERMIHAL
IF LEAVE ENDIF 8 +LOOP ;

The role of ASCBYTE is to take and ASCII character from the stack
and print it if possible or else to print a dot. A copy of the
character is tested to see if it has a value of less than 20 hex
and a second copy to see if it has a value of 7F hex. The flags
resnlting from these two tests are combined with the logical word
OR and if either of them gives a true result then the unprintable
ASCII character is dropped and a dot (2E hex) is printed instead.
The +three words ABYTES BRLINE and ADUMP follow the pattern of
BYTES LINE and DNUMP above.

The appearance of the output generated by these dump words could
be improved by using the numker formatting words to produce
number output right adjusted in a field of 2zercs. They could
alsc be more tightly, though less legibly, written but this is
not ustually desirable unless time is a critical factor.

The DUMP words shown above are already included 1in the core
language supplied.

Numbers and Arithmetic

The core language centains operators for manipulating single and
double precision integers. Internally these are represented in
binary twos complement form with single precision numbers
occupying one stack entry ¢r two bytes and double precision
numbers occupying two stack entries or four bytes. Numbers can
be input and output in any base according to the value of the
user variable BASE.

When a number is entered it is converted to binary and pushed to

the stack. An ordinary number which is a seguence of digits,
poszibly preceded by a minus sign, is automatically treated as
single precision. The two bytes used by these numbers allow the

representation -of 65536 distinct integer values, This range 1is3
used in two ways:

0 ... 32767 32768 ... 65535 -
[l - 32?6? _32T63 R "']-

29

Either positive numbers from 0 to 65535 or both positive and
negative numbers from -32768 to +32767 can be represented. The
came binary values are used in each case and whather they
represent unsigned or signed numbers depends on the context. The
operator . ({(dot) which prints the first stack entry always
interprets a humber as signed. There 15 ancther operatcr .
fudot} which prints the first stack entry as an unsigned number.

=1 . -1]

Unsigned numbers are particularly relevant to memory addresses
since the range {0 to FFFF in hex) alows any part of memory to be
accessed.

The words + — 1+ 2+ can be used with both signed and wunsigned
numbers. All the other single prcision operators treat numbers
on the stack as signed.

Double precision numbers have a range of -2 147 483 648 to 2 147
483 647 signed and 0 to 4 294 967 295 unsigned. A double
precision number is entered by including a point as part of the

number . The position of the point may be meaningful to the user
hut is otherwise unimportant. The number needs two stack entries
with the most significant part nearer the top of the stack. It

can be printed using the operator D. ({(ddot).

12 . 12 OFK
12. D. 12 QK
12. s o 0 12 QK

The last example shows that of the two stack entries which make
up the double precision number 12 the first is zero because 12 is
a positive number within single precision range.

Since Forth is s typeless language single and double precision
numbers are not formally separated. Both types can be used in
the solution of a problem. The word S->D converts signed numbers
from single to double precisicn; the reverse is effected simply
by discarding the high order part. Conversion is often avoided by
using the mixed precisicn opgrators.

An unusual operator is */ (star slash) which is used to express
fractional guantities.

: RATIO 2 3 %/ ;
2712 RATIO . 1808 QK

The number 2712 is first multiplied by 2 and then divided by the
first of the three stack entries 3. The intermediate value is
double precision. The wvalue of PI can be expressed to six
figures as 355 113 */.

30

another useful word is /MOD which gives the exact result of a
division by returning both the quotient and remainder. For
example seconds can be converted to hours minutes and seconds by
twoe successive uses of the phrase 60 /MOD. The words MAX and MIN
are used to restrict the range of numbers. MAX takes the first
two stack entries and returns the larger; MIN leaves the smaller.
The sign of a number is reversed by MINUS and its absolute wvalue
given by AEBES. There are double precision eguivalents of these
words DMINUS and DABES.

Twos complement numbers may be new to some users. Briefly +this
means that negative numbers are formed by subtracting their
absolute value from zero. Overflow is always ignored so the next
number after -1 which is also 65535 as an unsigned single
precision number is Zero. Similarly if two positive single
precision numbers are added to give a sum greater than 32767
there is overflow and a negative result. But the overflow is not
reported as an error Dbecause the result interpreted as an
unsigned numbker is correct.

High level defining words

The words : {colon) CONSTANT and VARIABLE are all used to define
cther words. They are referred to collectively as defining
words, They perform the compiling function in Forth. In Forth

the defining words and so the compiling process can be modified
and added to just like the rest of the language. This section
examines how this 1is done for words which handle data like
COMSTANT and VARIABLE. The compilation process started by : is
usually - concerned with sections rather than data and is
considered separately.

Since wariables are a basic idea found in nearly all languages

they tend to be taken for granted. In Forth variables are a
convenient starting point for considering how to manipulate data.
p variable is simply a place to put a value. The wvariable 1is

given a name so it can be used conveniently. The name refers to
the place and the value in the variable can be used or altered by
getting it from the place where it is kept. This process 1is
explicit in Ferth. Using the name of a variable places the
address where the value of the variable is kept on the stack. In
order to use the value of the variable the word @ (fetch) has to
be used to replace the address with the value on the stack.

New variables are defined using the defining word VARIABLE in a
sequence such as 57 VARIABLE HEINA. The action of the defining
word VARIABLE is to make a new entry in the dicticnary for the
word HEINZ, reserve a place which iz where the value of the
variable will be kept and put its initial value of 57 there and
then ensure that when HEINZ is used it places on the stack the
address in memory where the value of the variable is kept. All
these actions are controlled by the definition of the defining
word VARIABLE. Below 1s s&hown a possible definitien for
VARTABLE.

Jl

. YARIABLE <BUILDS , DOES> ; OK

The three elements of this definition <BUILDS , {comma} and DOES>
correspond to the three actions of VARIABLE described above. The
firet word <BUILDS ensures that VARIABLE makes an entry in the
dictionary . The entry contains the name of the new variable
=uch as HEINZ and some other information and is often referred to
as a header. Its format is common to nearly all words in the
dictionary.

Secondly ., (comma) takes the initial value of the wvariable 57
which is on the stack and puts it next teo the header. This is
the place where the value of the variakhle 1s kept.

Finally DOES> ensures that VARIABLE ensures that when HEINZ 1is
ssed it leaves on the stack the address of the place where the
value of the variable HEINZ is kept.

Three distinct actions are involved when <BUILDS and DOES» are
used. First a defining word such as VARIABLE is defined using
<BUILDS and DOES>. Secondly a particular variable zuch as HEINZ,
which is one of many such variables is defined using the defining
word VARIABLE. Thirdly the new variable HEINZ is nsed leaving its
address on the stack.

The words <BUILDS and DOES> are called high level defining words,
These are most important words which allow the creation and
manipulation of data structures chosen by the user as single
units. Each type of data structure has a defining word., The
defining word uses <BUILDS to specify how the data structure 15
built up and DOES> to specify how the data is accessed. They
form one of the most powerful features of the language.

Exanples of data structures include variakles, constants, arrays
and string variables. Variables and constants are predefined in
the core languwage. Forth offers the user freedom to add new data
structures without any limit on their complexity or degree of
specialisation.

The high level defining words are nsed in the following way.

. defining word name <BUILDS defining time code DCGES>» run time
code

when the defining word is used <BUILDS creates a dictionary
header for the new word. The code folowing <BUILDS specifies the
form of the new word in the dictionary and inserts the initial
values of the data. DQES> leaves the address of the atart of the
data on the stack when the new word is used. The code following
poES> is executed when the new word is used and usually accesses
the data using the address of the first byte supplied by DOES>.
These actions can be illustrated by the definition of CONSTANT
shown below.

: CONSTANT <BUILDS , DOE3S> @ ;

32

rhe defining word CONSTANT is used to define constants in a
geguence such as 12 CONSTANT DOZEN. The code following <BUILDS
in the definition of CONSTANT is , (comma) which ensures that
CONSTANT places 12, which iz the initial wvalue of the constant
DOZEN, in the parametrer fiald of DOZEN. The code following DOES>
is & (fetch). The code is executad when DOZEN is used and useas
the address left by DOES> to recover the value of the constant.
rhe inclusion of @ accounts for the difference in the behaviour
of constants and variables. Constants return their values and
gariables the address of their values.

The next example shows the definition of a defining word ARRAY
which is used to define one dimensional arrays. ARRAY is used in
the following way :

50 ARRAY AVERAGES Defines an array AVERAGES dimensicn one
by fifty. The initial value of each
element of the array is zero.

41 AVERAGES Leaves on the stack the address of the
41st element of the array AVERAGES.
Fach element can ke manipnlated using @
r and +! in the same way as a variable.

The definition of the defining word ARRAY is shown below,

: ARRAY <BUILDS DUF
DUF 2 * HERE SWAP ERASE
2 * ALLOT

DOES> SWAP 1 MAX OVER @ MIN
2 * + :

mhe words after <BUILDS allocate space in the dictionary for the
elements of the array and fill this space with zeros thus
initialising each element toc zerc. Two hytes are needed for each
element and two bytes at the beginning store the gize of the
ALTAY.

DUF Writes a copy of the array size in the
parameter field of the array (50 in
AVERAGES)

DUF 2 * HERE SWAP ERASE Erases or fills with zeros two Dbytes
for each element from the dictiohary
pointer given by HERE.

2 * ALLOT Reserves two bytes in the dicticnary
for each array element by advancing the
dictionary peointer.

The data structure is now a size which is used for checking the
validity of subscripts fcllowed by the array itself.

33

when an element of the array is called by a seguence such as 41
AVERAGES, DOES> and the words after it come into play. These
words check the validity of the subscript and return the address
of the desired element.

Word Stack contents first entry at left

DOES> data address subscript The subscript is supplied
when the array is used.

SWAP subscript data addrass

1 MAX subscript data address Minimum subscript value
of one.

OVER 8 MIN subscript data address Maximum subscript value
of size. Size is stored
at the data address.

2 * + element address Left on stack.

The action of DCOES> is to leave on the stack the address of the

first byte of data referred to here as the data address. 211
other data is accessed by adding an offset to this addreszss. In
the case of arrays defined using ARRAY the first two bytes
contain the size of the array. The address of the first

subscripted element 18 the data address supplied by DOES> + 2.
The subscripts are from 1 to 30 in the case of AVERAGES and the
address of each element is found by adding two times the
subscript wvalue (there are two bytes for each element} ToO the
data address. If the subscript supplied wia the stack to
AVERAGES 1is less than one then the address of the first element
is returned: if the subscript is greater than 50 then the address
of the last element is returned. This arrangement is sufficient
to prevent corrupticn of memory outside the array. Instead an
error message such as ARRAY SUBSCRIPT OUT OF BOUNDS could be
generated or if speed is a priority then no error checking at all
may be appropriatre. The user is free to choose.

Oonce ARRAY has been defined then many different arrays of varying

sizes can be added using ARRAY. Each array will behave in the
same way. FPach array will consist only of a dicticnary header
{so it can be found in the dictionary) and passive data. The:

active instructions are in the defining word ARRAY after DOES>
this set of instructions is shared by all the arrays defined by
ARRAY which is a highly efficient arrangement.

vocabulary Control

The dictionary of the core language is a single linked list of
word names. Each word name containg a pointer to the previous
entry in the dictionary. The text interpreter begins a search
for a word mame at the latest dictionary entry. I1f a new word is
defined wusing a name which already exists then the original
definition 4is no longer accessible because the new one ig found
first and therefere used. Other words which contain the older
version as part of their definiticn are not affected because

their compiled code contains the address of the older version.

34

gtill it might none the less be useful for one or more words to
ghare the same name and yet be accessible and this is achieved by
vocabulary control.

vocabulary control provides +the primary means of grouping
together in the dictionary words with related functions. The
core language contains a vocabulary word FORTH. A vocabulary
word has in its parameter field a pointer to the latest entry in
the vocabulary. Each time words are added to the vocabulary this
pointer is updatred. When the wvocabulary is referenced when the
user wvariable CONTEXT is set to contain the address of the
pointer field within the wvocabulary word with the result that all
dictionary searches for word names begin with the latest entry in
that vocabulary. The word DEFINITIONS copies the pointer field
address in CONTEXT to the user variable CURRENT with the result
that newly defined words will be added to that vocabulary.

The rcore language consists of a single vocabulary called FORTH.
Until other vocabularies are added the latest entry in this
vocabulary is alse the last werd in the dictionary. A new
vocabulary is added using the vocabulary defining word in &
seguence such as VOCABULARY EDITOR which creates a new vocabulary
called EDITOR. The sequence EDITOR DEFINITIONS allows words to be
added +to the new vocabulary. When the editer 1is loaded the
dictionary contains +two words with the name T. Tha seguence
EDITOR I gives I the meaning insert text from PAD while FORTH I
gives I the meaning of copy the index inside a DO LOOP construct
to the stack.

By convention vocabulary words are made immediate so the complete
defining sequence for the vocabulary word EDITOR is VOQCABULARY
EDITOR IMMEDIATE. This means that both the meanings of I can be
used in the definition of another word. If the voecabulary word
itself is to be part of a definition then the sequence [COMPILE]
EDITOR must be used to force compilation.

wWwhenever the word FORGET is used to discard words from the
dictionary the CONTEXT and CURRENT vocabularies must be the same.
DEFINITIONS may be used to set the CURRENT vocabulary to the
CONTEXT vocabulary.

Formatted number output

The number output operators are used to convert 2 binary number
to a string of ASCII characters and format the result with spaces
and other non numeric characters as regquired. The string is
built up at PAD and is usually output by TYPE when it is
complete.

A number is converted to digits by repeatedly dividing by the
current value of BASE. The remainder of each division forms one
digit of the number starting with the least significant digit.
Consequently the character string is built up from right to left.
Other characters are inserted as required,. The number actually
converted is always an unsigned double precision value. Single

35

precision numbers must always be converted to double precision
first. A sign i1s added in a separate operation.

The conversion process 15 started by <¢ wheih initialises the
user variable HLD. HLD contains a pointer to the left most
character in the string which grows downwards in memory from FAD,
The word # converts one digit from a double precision number on
the stack by dividing it by the value of BASE. The double
precision guotient is left on the stack and the remainder is
converted +to an ASCII character and inserted in the character
string. The word #s performs the action of # repeatedly until no
more sSignificant digits can bhe generated and a double precision
zero 1s left on the stack. Both # and #5 always produce at least
one digit even 1f it is zero.

The word SIGN is used to test the sign of a signed number and add
a minus sign ta the string if the number is negative, SIGN uses
the third stack entry, immediately under the double precision
numbher being converted, which must be a copy of the high order
part of the double precision number made hefore DABES is used to
make the number unsigned for conversion into digits.

Other characters can be inserted into the string when required by
the sequence ¢ HOLD which inserts the character c¢. Finally #> is
used to complete the process by dropping the double precision
number on the stack angd leaving the address and character count
of the character string for use by TYPE.

: UD. < $#5 4> TYPE SPACE ;
: D. 5WAFP OVER DABS
<} #5 S5IGN #> TYPE SPACE;

In the first example UD. outputs an unsigned double precision

number from the stack using #S to generate all the significant
digits with no other characters, The second shows a possible
definition of D. (which is in the core language). <The sequence
SWAF OVER DABS makes a copy of the high order part of a double
precision number on the stack in the third stack entry position
before DABS forms the absclute walue of the double precision
numper ., The third stack entry is used by SIGN, which adds a
minus sign to the character string if it is negative.

Single precision numbers must be converted to double precision
before they can be operated on by the number formatting words.

+ 0. 0O
<# #S #> TYPE SPACE ;
r . DUP ARBS O

<% %S SIGN #> TYPE SPACE ;

U. outputs an unsigned single precision number which is converted
to double precision by pushing a zero in front of it on the
stack. In the signed word . a copy of the number is made as the
third stack entry for use by SIGN. The seguence DUP ABS O is

36

moYe economical than 5->D SWAT OVER DARBS.

These examples show the basic sequences needed to output single
and double precision signed and unsigned numbers. Below are two
more sophisticated examples of formatting.

HEX
= ZEROS 0 MAX -DOF
IF O DO 30 EMIT LOQP ENDIF ;
+ UD.ZR *R
<3 ¥5 #>
R> OVER - ZER(QS TYPE ;
: SEX # & BASE ! # DECIMAL ;
: JTIME <# SEX 3A HOLD SEX 3A HOID % # >
TYPE SPACE ;
DECTMAL

UD.2ZR outputs & double precision number occcupying the second and
third stack entries right adjusted in a field of zeros whose

width is the first stack entry. Thus it behaves similarly to
D.R. In DD.ZR the field width is kept on the return stack while
number conversion takes place. After number conversion ends

with #> the count and address of the character string
representing the number is left on the stack. The field width is
restored to the parameter stack by R> and OVER - copies the count
over the field width and subtracts it from the field width. The
difference between the two is used by ZEROS to fill the unused
part of the field with zeros from the left and then the character
string ia added by TYFE.

ZER0OS takes one value from the stack and cutputs that number of
zexros. Nothing is ocutput if the number is less than one. Note
that -DUP duplicates the first stack entry eonly if it is non zero
and that IF is used to make an implicit test for a non =zero
value. Because numbers output by . are always followed by a space
the ASCII seguence 30 EMIT rather thanm 0 . has to be used inside
the loop to output each zero.

The word .TIME takes a double precision number from the stack
representing seconds and converts it to an output of hours
minutes and seconds in the format 00:00:00. For the seconds and
minutes (remembering that the character string is built up from
right to left) .TIME uses SEX to convert one digit in the decimal
base followed by cne in base 6. Between the pairs of digits a
celon is inserted by 3A HOLD where 32 is the ASCII cdde for :
Two hours digits are converted in the decimal base.

Characters and Strings
S5ingle characters are usually placed in stack entries where the
ASCIT wvalue of the character occupies the lower seven or lower

eight bits of a sixteen bit stack entry. A character can be
output from the stack using EMIT, The seguence ¢ EMIT outputs

37

the character whoase ASCITI value is ¢ to the screen. EMIT, which
is used for all output of characters, IiIngrements a user variable
named OUT each time it is used. The value in OUT can be used to
control cutput formatting.

There are three predefined words for outputting particular
characters. SPACE and CR output a space and carriage return
respectively and require no stack entries. SPACES takes one
stack entry and ocutputs that number of spaces.

A character can be placed on the stack by specifying its ASCII
value as a number, A character may alsoc be obtained from the
keyboard by the word KEY which waits for a key to be pressed and
places the ASCIY wvalue on the stack.

Skrings are not usuwally themselves placed on the stack. Instead
a string is stored in memory and its address and sometimes a
count of its characters manipulated in the stack. Strings are

usually read from the normal input text using WORD. The seguence
¢ WORD scans the input text until the delimiter character ¢ or

the end of text marker ASCII zero is found. Leading examples of
the delimiter character are ignored. The text enclosed in this
way 15 moved to the dicticnary pointer preceded by a byte
containing a count of the number of characters. The dictionary
pointer and the free area of memory immediately above it 1is a
convenient temporary location and its address is placed on the
stack by HERE.

The text interpreter of the language itself uwses WORD to
intrerpret text typed at the kevboard or stored on screens. The
delimiter is usually a space. Thus for general purposes it is
often desirable to move the string away from the dictionary
pointer to anotyher temporary location for further processing.
This 1is provided by PAD which returns an address &4 bytes after
the current value of the dictionary pointer,

There are a number of words for manipulating memery regicns that
are specially useful for text processing. The segquence address
count byte FILL fills an area of memory with the specified byte
starting at the address and for the nunber of locations given by
count. Two specilal cases of FILL are address count ERASE and
address count BLANKS which fill a memory region with zeros and
spaces (ASCITI 20 hex) respectively. A fourth important word Ls

CMOVE. The sequence source destination count CMOVE moves the
number of bytes given by count frem the source address to the
destination address. The bhytes with the lowest memory address

are mopved first and care must be taken 1f the source and
destination areas overlap.

An sxample aof the use of thesge words is shown below in the word
TEXT which is on the first editor screen.

+ TEXT HERE C/L 1 + BLANKS
WORD
HERE PAD C/L 1+ CMOVE ;

8

The sequence ¢ TEXT scans the input text stream and movez text
snclosed by the delimiter ¢ to PAD. The constant C/L returns
the number of characters per line. The sequence HERE C/L, 1+
BLANKS fills an area of memory starting at the dicticnary pointer
and one more than C/L bytes long with spaces. Then WORD takes
the ABCII character from the stack and encloses text placing at
the address of the dictionary pointer, The sequence HERE PADR /L
1+ CMOVE moves the string to PAD.

The usual s#pace must be left between TEXT (or a word which uses
TEXT) and the string being read. At the end of the string must be
the delimiter character. For example BL TEXT where BL 1is a
constant returning an ASCII space will enclose text up o the
next space while HEY 22 TEXT will enclose text up to the next
quotation marks " whose ASCII value is 22 hex. To enclose all
the text on a line the convention is to vse 1 TEXT since an ASCIT
1 is unlikely to be in the text being scanned.

Once a string is at PAD it can be processed further or stored in
a string variable or in the blocks of mass storage or wheraver it

is reguired. A simple defining word for a string wvariable " is
below.
: SVARIABLE <BUILDS HERE C/L 1+ BLANKS C/L 1+ ALLOT

DORS> :

SVARIABLE TEST

The action of <BUILDS and DOES> is explained in detail in the
subsection on high level defining words. TEST behaves like an
ordinary variable in that it returns an address. Instead of
having two bytes to store a number it has C/L 1+ bytes tc store a
string because the defining word $VARIRELE contains the sequence
C/L 1+ ALLQT. These bytes are initialised to spaces by the
sequence HERE C/L 1+ BLANES. A string can be moved from PAD +o
TEST by PAD TEST C/L 1+ CMOVE.

Cn a disc system the blocks of mass storage are usually the best
place to store strings. Otherwise it may be worth developing
more sophisticated versions of $VARIABLE.

Strings and text in general can be output using TYPE. The
sequerice address count TYPE cutputs a string of n characters
where n eguals the count stored at the address. Note that only

the characters of the string themselves are in memory this time.

If the string is in the frequently found and very useful format
of a byte containing a count of the characters in the string
followed by the characters then the sequence addr COUNT TYPE will
output the string. This time the address is that of the byte
containing the count and COUNT will form the rcorrect arguments on
the stack for TYPE.

Frequently there are several spaces after the last significant

character in a string and these can be eliminated by -TRAILING.
This word is used immediately before TYPE in a sequence such as

39

address c¢ount ~TRAILING TYPE and adjusts the count to avoid
cutputting spaces unnecessarily. The string itself is not
altered.

The protccol used by FORTH is sometimes described as user driven.
fhere ig hno prompting as such and the system waits for input
instructions which are carried out and then simply waits for
further instructions. HNumbers required as parameters precede and
text follows the words that use them. This arrangement is very
general and a highly desirable attribute of a self extending
language. An individual program may require a prompting system
and ¢lose control of input. Like most things in FORTH this can
be provided.

The word QUERY accepts a line aof up to eighty characters to the
terminal input buffer whose address is available in the user
variable TIB. A line in this buffer can be processed easily with
WORD. The sequence address count EXPECT accepts a line of
characters from the keyboard with a maximum number of characters
equal to count and terminated in any case by RETURN. The
characters are stored at the address and the end of the line is
marked by three ASCII zeros. EXPECT, which is used by QUERY and
the language itself for accepting input, is somewhat primitive
recognising only backspace as a control key and treating all
other keys as data. A more sophisticated version of EXPECT could
be written to user requirements even for general purpose use.

With these words it is possible to define input words similar +to
those found in eother languages,

GETS QUERY 1 TEXT :
GET# QUERY 1 TEXT PAD NUMEER ;

td Ea

The word GETS awaits the input of a string and moves it to PAD,
It could be included in a seguence with a prompt such as CR ."
Enter answsr " GETS.

It is often desirable to be able to convert strings of characters
to numbers. This c¢an be achieved by NUMBER which is used in a
seqguence sSuch as address NUMBER and converts a string stored at
the address {including a byte with a character count) to a double
precision number with reference to the current base. An invalid
character will result in error MSG O. An example of the use of
thie word is shown in GET# which returns a double precision
number.

Colon Compilex

The text interpreter, which interprets the text typed at the
keyboard and stored on screens, has two modes. In the execute
mode words are searched for by name in the dictionary and +then
executed and numbers are pushed to the stack. When : {(colon) is
used to start the definition of a new word the text interpreter
enters Lts compile mode. In this mode it generates the threaded
code which represents compiled Forth, Words are still searched

40

for by name in the dictionary but are not executed; instead their
addreses are added to the definition of the new word being added
to the dictionary. Numbers are alsoc written into the threaded
code preceded by a literal handler which will push the number to
ghe stack when the code is executed.

The word : forms a dictionary entry for the name of the new word
jt defines. It also places the text interpreter in the compile
mode by setting the value of the user variable STATE to CO hex.
fhe word : completes a definition by, among other acticens,
getting the value of STATE to zZero which restores the execute
mode. Inbetween the two words and numbers are compiled and not
executed unless 1instructicns are given otherwise. This
subsection is concerned with those instructions and controlling
the compilation process. .

There are some words whose function is to control compilation
itaelf. 'These words are called immediate words and they are
executed and not compiled in the compile mode. The word ;
(semicolon) is an immediate word because it executeés to terminate
the definition process rather than itself being compiled. A word
is made an immediate word by writing the word IMMEDIATE after its
definition.

By convention vocabulary words are made immediate so that
different vocabularies can be selected during a definition. To
include a vocabulary word in a definition it must be compiled and
not executed even though it is an immediate word. This is achived
by [COMPILE] which forces compilation of the word which follows
it even if it is immediate. Thus including [COMPILE] ERITOR as
part of a definition would make the vocabulary word EDITOR part
of the new word being defined rather than select the editor
vogabulary during the definition.

A second variation on this theme is to cause words which are not
immediate words to be executed and not compiled inside a colon
definition. This is done by enclosing them in the square
brackets [and 1. [is an immediate word which sets the value of
STATE to zero thus placing the text interpreter in the execute

mode; | places the text interpreter in the ccmpile mode. For
example the sequence [HEX] will change the number base to hex
during the definition. HEX does not become part of the
definition.

An important use of [and] is the evaluation of expressions at

compile time. I1f the sequence 27 3/ was part of the definition
of a word then the division would be carried out when the word
was executed. If the sequence is changed to [27 3/] LITERAL

then the division will be carried out when the word is compiled
and the result compiled as a number literal. The sequence [27 3/]
enters the execute mode, forms the result of the expressicn on

the =stack and returns to the compile mode. The immediate word
LITERAL compiles the first stack entry as a number literal. This
precess can be extended toe less trivial expressions. Each

component of the expression must, of course, be a constant.

41

The definition of LITERAL itself provides the final example, in
which one word, uJsually an immediate word, compiles another when
it is executed.

: LITERAL STATE B IF COMPILE LIT , ENDIF ; IMMEDIATE

LITERAL first tests the value of STATE and deoes nothing if the
text interpreter 1s in the execute mode,. The word COMPILE will
cause the word that fellows it, in this case the number literal
handler LIT, to be compiled when LITERAL is executed. The word ,
(comma)] will put the number on the stack when LITERAL is executed
into the compiled c¢ode after the code for LIT. Thus in the
compile mode LITERAL will compile the first stack entry as a
number literal.

A word 1n TForth can include itself in its definition. This
process is called recursion and allows the computation of
functiens which can be defined in terms of themselves. Faor
gxample the factorial function can be defined as:

1
n * facteorial (n-1)

factorial (1)
factorial (n)

This can be written in Forth as:

. CALL LATEST PFA CFA , ; IMMEDIATE
: FACTORIAL DUP 2 <

IF DROP 1

ELSE DUF 1 - CALL *

ENDIF ;

FACTORIAL is used in a seguence such as n FACTORIAL and returns n
factorial on the stack. The immediate word CALL obtains the code
field address of FACTORYAL and uses comma to add@ it +to the
compiled code. FACTORIAL cannot be referred to by name while it
is being defined because the definition is neot complete. Although
the factorial of a number less than one is undefined, the
definition shown will return to one, providing a safe exit if a
number legss than one is given as a parameter.

Fleoating Point Extension

The flcating point extension is designed to be as closely
integrated as possible with the rest of the lanquage and follows
the same conventions and procedures as single and double
precision numbers. The fleoating point operators have their own
vocabulary and are made available be the wocabulary name
FLOATTING.

It will be recalled that a single precision integer is written as
a sequence of digits with no other characters and that a double
precisicn integer is written as a series of digits including a
point. Floating point numbers are written as a series of digits
including a comma and may include an exponent preceded by E.

42

only the decimal base may be used for the input (and output) of
floating point numbers. Below are some examples of the different
types of number.

gingle precision integer 0 1 -34 31145
double precision integer i 1. -34. 200000.
floating point 0,0 1,0 ~-34,26 2,0E5 2,0E-5§

Up to nine significant decimal figures may be used. Numbers with
a magnitude hetween 1,4693680E-39 and 1,7014118E38 can he
represented together with zero. A floating point number can be
printed by F. which generates eight significant figures after
rounding the ninth figure plus an exponent, in standard form.

Each floating point number occupies three stack ehtries of six
bytes. The words FDUF FSWAPR FDROP FOVER and F2DUP allow the
nunbers to be manipulated on the stack; they are eguivalents of
the single precision stack operators. The basic arithmetic
operations are performed by F+ F- F* and F/ while FABS returns
the absclute wvalue of a floating point number. The defining
words PCONSTANT and FVARIABLE allow floating point constants and
variables. The value of a variable is obtained from the address
its name leaves on the stack by F and a new value stored in it
by F!.

The word FLOAT allows a double precision integer and a single
precision integer decimal exponent to be converted to a floating
point numbex. For example 123. -2 FLOAT will form the floating
point number 1,230EQ. Inside a D} LOQP construct the index,
placed on the stack as a single precisicon integer by I, can be
converted to a flpating point number using 5->*D to convert it to
double precision and FLOAT.

: FCOUNT FLOATING 10 0 DO I 5->0 O FLOAT CR F. LOOP ;

The vogabulary word FLOATING must ke used inside the definiticn
to select the FLOATING vocabulary because colon autcomatically
sets the context vocabulary equal to the current vocabulary.

Flpating point numbers can be converted to double precision
integers using INTEGER which truncates any fractional part.

& full set of relational operators allow tests and comparisons
involving floating point numbers. The flags generated can be
used by the usual BEGIN UNTIL and BEGIN WHILE REPEAT constructs
and the IF ELSE ENDIF construct.

Each fleoating point number is made up of a single precision
exponent representing a power of two and a double precision
fracticnal part. The latter 1s a signed twos complement number
with an imaginary binary boint after the sign bit which is the
most significant bit. It is alsc shifted as far to the left as
possikle and the exponent adjusted appropriately. The whole
number is the product of the fracticnal part and two raised to a
power egual to the exponent. The internal accuracy is governed by

43

the fractional part and is the same as that for double precision
integers of slighly better than nine decimal fiqures. It should
be remembered though that certain simple numbers (0,1 for
example)} become irrational when expressed in bhinary. The range
is governed by the exponent which must lie between -128 and +1:27
and internally is a byte length signed twos complement number.

Overflow is not reported mainly because of the nature of the twos

complement binary exponent, A2 calculation may overflow
internally to a considerable extent but give a correct result on
output provided the final answer is within range. As with

integer arithmetic division by zero returns the maximum possible
value with the appreopriate sign.

FLOATING DEFINITIONS
: P+l DOopP *R FB F+ R> P! ;
: FMINUG 2R DMINUS R» ;

In the two examples above FLOATING DEFINITIONS has made FLOATING
the current vocabulary so FLOATING is not needed inside the
definitions. The word F+! behaves similarly to +! and can be
used to increment the value of a flecating point variable. When
F+! is used in a sequence such as 1,35 TOTAL F+! where TOTAL is a
floating point variable one copy of the address of the wariable
is kept on the return stack and the addition performed on the
parameter stack. In the second example the binary exponent is
stored on the return stack while the sign of the fractional part
is reversed using the double precision operator DMINUS.

Floating point numbers are a comparatively little explored area
of Forth. Integers should not be neglected though and should
continue to be used for counting, loop control and those
applications where the speed and accuracy of integer operations
are required.

The output of floating point numbers may be formatted. The
paragraphs below should be read in conjunction with the
subsection entitled Formatted Number Qutput which describes the
process for integer numbers. '

: OUTPUT SWAP QVER DAES
<§% BASE &£ M/MOD ROT DROP
7 0 DO # LOOF 2C HOLD
5 SIGN #» TYPE ;

(F.)
>R OUTPUT R>

" E* .,

by

The example above shows how the number. formatting operators may
be used to output fleating point numbers in the format
Q. 0000O000ED. The principles employed may be used to produce any
desired format.

44

LOATING vocabulary, converts a fleating point number on the
gack to a double precision integer greater than or egual to 1ES8
wt less than 1E% and a single precision integer decimal
pohent.

N p the word F. the gperator (F.}), which 1s a8 primitive in the

he double precizion integer has two special features. It has
een rounded in the ninth significant figure and there 1is an
pplied decimal point between the first and second significant
igures. The word OUTPUT shows how this number may be formatted.
Its range indicates that it contains nine decimal digits and =ach
pf these must extracted although some may then ke discarded.
fhus in the example the ninth least significant figure is
igcarded by the segquence BASE @ M/MOD ROT DROP. Mcre figures
ould be discarded by placing this sequence in a loop. Seven
figures are added to the ASCII string by the sequence 7 Q0 DO ¥
LooP. Finally, after inserting the decimal comma, the most
significant figure is added to the string by S5#. The total numker
of fiqures dealt with must always add up te nine,

Returning +to F. the decimal exponent is stored on the return
stack while the rest of the number is processed by QUTPUT. The
decimal exponent 18 a single precisien integer whose value has
been adijusted to reflect the implied positon o©of the decimal
point. In this example it is output simply by DOT but it could
be formatted differently 1f desired.

Floating Point Arithmetic Operators

Word S5tack Action

F+ frnl fné fnl+fn2 Adds two floating point numbers.

F- fnl £fn2 fn2-fnl Subtracts the first floating
point number from the second.

F* fnl fnz fnl*fn2 Multiplies two fleoating point
numbers.

F/ fnl fn2 fnZ/fnl Divides the second floating

point number by the first.

FAEBS in absifn} Returns the absoclute value of a
floating point number.

F. fn Printsz the first floating peoint
number on the stack in standard
form. The result is valid anly
in the decimal base.

FDOP fnl Inl £fnl Duplicates a floating peoint
number on the stack.

45

FEWAF

FDROP

FOVER

F2DUF

FQ=

Fo<

F>

Fo=

¥

Fd=

FCONSTANT

FVYARTAELE

F@a

FLOAT

tnl fn2
fn

fnl £En2
fnl fn?
fn

n

fnl fnZz
fnl £nZ
fnl fn2
tnl fnz
fn

fn

addr
addr fn
n d

fne

fn2
fn2

fnl
fnl

In

fn

fnl

fnl

fne
fn2

Exchanges twce floating point
numbers.

Drops a fleoating peoint number.

Copies the second floating point
nunber over the first.

Duplicates a pair of floating
point numbers.

Returns & flag which is true if
the number eguals zero,

Returns a flag which is true if
+he number is less than zero.

Rerurns a flag which is true if
fnZ is greater than fnl,.

Returns a flag which is true if

fnZ is greater than or equal to
fnl.

Returns a flag which is true if
fnZ is less than fnl.

Returns a flag which is true 1if
fnz 1is less than or egual to
fnl.

fn FCONSTANT coccc creates a
fleating peint constant named
alatatn value fn. when the
constant 1is used it leaves 1its
value as a floating point number
on the stack.

fn FVARIABLE cccco creates a
floating point variable named
cogog initial wvalue fn. When the
variable is used it leaves its
address on the stack.

Replaces an address with the
floating point number stored at
the address.

Stores the fleoating point number
at the address.

Converts a douhle precision
number and a single precision
decimal exponent to a floating
point number.

46

Word SEtack

INTEGER fn d
FLITERAL fn

NUMBER addr nd
FEL addr

INTERPRET

{F.) fn nd
FLOATING

OTEIT o

~ZEROS n addr n addr

47

Actiaon

Converts a floating point number
toc a double precision integer
truncating any fractional part.

In the compile
floating point
literal. An

mode compiles a
numher as a
immediate word
usually used inside a coleon
definition. In the execute mode
takes no action.

Converts a string consisting of
8 counit and that number of bytes
stored at the address to a
double precision integer and
single precision, decimal
exponent. If the value of the
variable FPL is -1 the decimal
exponent bhas ne significance:
otherwise wuse FLOAT to form a
floating point number.

if
a

A wvariable whose value is -1
the last number input was not
fleating point number.

Text interpreter which performs
the same function at INTERPRET
in the FORTH vocabulary except
that it alsc processes floating
point numbers,

Converts & floating point number
to a double precision integer
between 1EE and 1E% and a
decimal exponent. The integer
is rounded in the ninth
significant decimal figure and
the exponent corrected for
output in standard form.

Selects floating point
vocabulary. Like all wvocabulary
words FLOATING is immediate.

Special purpose number
formatting word which formats
the double precision integer
formed by (F.}. Used by F..

Adjusts parameters used by TYPE
to eliminate trailing zeros from
a decimal number in standard

Word Stack Action
form.

(NUMBER} addr d addr d Converts ASCII characters stored
at addr +1 to digits and
accumulates them into the double
precison number d. Counts the
humber of digits processed inta
variables DPL and FPPL unless
their value i3 -1. Returns the
address of the first
nneonvertable character.

PUNCT Special purpose WwWords used by
EXPON NUMEER.
PICK n nth n PICK copies the nth single
stack precision stack entry. Thus 1
entry PICK is the same as DUP and 2
PICK as OVER. Used for
manipulating mixed floating
point and other numbers on the
stack.

String Handling Words

This description of the three screens of string handling words
which are on the disc or tape in souce form should be read in
conjunction with the subsection Characters and Strings in Forth
Technigues. The object of these words is to show one way in
which the string handling techniques found 1in some other
languages can be implemented in Forth.

The format chosen for strings 1s that of a byte containing the
length of the string followed by the characters in the string.
The whole is stored in memory and the addresses of strings, which
are the addresses of their length bytes, are manipulated on the
stack. Strings are never themselves placed on the stack although
single characters may be.

There are +two temporary locations for storing and procesing
SErings. These are PAD and 2PAD defined as 68 and 136 bytes
after the dictionary pointer respectively. It is impeortant to
note that these locations move when the dictionary pointer moves
and that use should be made of string variables or similar
arrangements for the permanent storage of strings. PAD and ZPAD
are, none the less, adequate for most applications as temporary
stores.

Strings should be placed between " and " with one space at least
P

between the first ® and the start of the string. When " is used
inside a word definition the strihg is compiled and placed at PAD
when the word is executed. outside a word definitien, in the

48

{.uacute mode, ™ simply places the string at PAD.

¥ string is printed by §. which requires an address, that of the

Length byte of the string, on the stack. T , .
printed by PAD 5. r hus a string at FAD 1=

fhe word >2PAD copies ?he string at PAD to 2PAD. In general
gtrings are copied using CHMOVE in a sequence such as source
pddress destination address number of bytes to be moved CHMOVE.
avoid overlapping moves; move a string to a third leocation first.
ghere are no run time checks on inappropriate uses of CMOVE.

LEFTS is used in a segquence such as n LEFTS. 1t operates on the
ptring at PAD and replaces it with its left substring of n
characters and uses 2paD. n RIGHTS performs the analogous
operation farming the right substring. nl n2 MIDS forms a
gubstring nl characters from the left of the string at FPAD nz
characters long provided gufficient characters are available.

gtrings can be compared using %= which reguires twWo addresses,
one for each string, on the stack. addrl addr2 %= returns a flag

which is true only if the two strings are identical.

gtring Operators
Word Stack Action

(") The run time procedure which
transfers a string embedded
in compiled code to PAD.

Encloses a string up to the
delimiter ". In the executa
mode moves the string to FAD;
in the compile mode compliles
the string.

SVARTABLE Defining word used in a
sequence sUch as SVARIABLE
ccoe which creates a string
variable named Ccocc
initialised to blanks. when
the variable is used leaves
the address of the atring
space on the stack.’

ZPAD addr Temporary location 136 bytes
after current value of
dictionary pointer.

BLANKPAD pills PAD with blanks.

45

> 2PAD

LEFTS

RIGHTS

MIDS

MATCH

nl n2

addrl addr2

addr

nl addr 1
n? addrz

£

n

f

a0

Copies the string at FPAD to
2PAD,

Replaces the string at FPAD
with its left substring of n
characters.

Replaces the string at PAD
with its right substring of n
characters.

Replaces the string at PAD
with a substring starting nl
characters from the left, n2
characters long.

Eeturns a true flag in the
strings whose addresses are
on the stack are identical.
Ctherwise returnsa a false
flag.

Outputs a string stored at the
address.

Searches forward from addr?
for n2 bytes seeking a match
for a string of nl characters
whose first character {(not its
length byte)] is at addrl.
Returns pointer to immediately
after the matched string as an
offgset from addr?z and a flag
which is true only if |
successful match is made.

GLOSSARY

STACK QFERATORS

SINGLE PRECISTION ARITHMETIC GPERATORE
DOUBLE PRECISION ARITHMETIC OPERATORS
MIXED PRECISION ARTTHMETIC OPERATORG
LOGICAL OQPERATORES

QUTPUT OPERATORS

ADDRESS OFPERATORS

RELATIONAL OFERATORE

CONDITICONAL AND LOCPING COFERATORS
RETURN STACEK OFERATORS

DICTIOQNARY AND MEMORY MANAGEMENT WORDS
DEFINTING WORLS

CHARACTER AND STRING OFERATORE

NUMBER FORMATTING OPERATORS
VOCABULARY CONTROL WORDS

USER VARTIABLES

SYSTEM CONSTANTS

SYSTEM OFPERATORS

VIRTUAL MEMORY OPERATOQORS

ERROR CONTEOL WORDS

EQITOR WORDS

51

Stack Operators

NOTE the rop stack entry is on the LEFT

Woard

DROP

DUP

~DUF

SWAFP

OVER

ROT

2DUpP

SP#@

SP1

Single

word

Stack

nl n2

nl nZz

nl n2
ni

sStack

nl n2

nt na

nl n2

addr

enmpty

nl+n?2

nZz-nl

nlnz

52

Action

Discards the first stack
entry.
Duplicates the first stack
entry.
Duplicatea the first stack
entry only if it jis not equal

to zero.

Reverses the order of the
first two stack entries.

Duplicates the second stack
entry over the first.

Rotates the third stack entry
te the top of the stack.
Duplicates a double precision

number or a pair of 16 bit
numbers.

Returneg the wvalue of the stack
pointer which peoints to the

firet stack entry as it was
before SPE was used,
Clears the stack by

initialising the stack pointer

precision arithmetic operators

Action

Adds first two stack entries

Subtrracts
from =econd

first stack entry

Multiplies first two stack

entries

MOD

/MOD

*/

* /MOD

ABS

MINUE

MARX

MIN

1+

2+

S5-->D

nl

nl

nl

nl

nl

nl

nl

nl

nl

nl

nl

nl

nl

n2

n

nz

nZ ni

nZ ni

nz

nz

nz

nz/nl
mod
n2/nl

nl=quot
nZ=rem

nl =
result

nl =
result
n2 =
rem

abz (nl)
-nl
nl =

larger
nl =
smaller
nl + 1

nl + 2

dl

nl =
result

53

Dividegs second stack entry
hy first
Forms second stack entry

module the first

Divides second stack entry by
first. The quotient is the
first stack entry and the
remainder is returned as the
second,

Multiplies the second stack
entry by the third forming
a 32 bit product which is

divided by the first stack
entry.

result = n2*n3 /nil

As w/ except that the
remainder from the division

is returned in addition to

the guotient.

Returns the absolute value of
the first stack entry.

Reverses the gign of the first
stack entry.
Returns larger of first two
stack entries.
REeturns amaller of first two
stack entries.

Increments the first stack
entry.

Increments the first stack
entry twice.

Converts the signed s5ingle
precision entry to signed

double precision.

If nl is negative reverses the
gign of n2. nl is discarded
and n2 is the result.

Double Precision Arithmetic Operators

Word

H

DABE

DMINDS

D+~

Stack

dl d2

dl

dl

nd

Al+d42

abs{dl

-dl

d =
result

)

Action

Adds two double precisicon
numbhers.

Returns the absolute wvalue
of 3 deuble precision number,

Eeverses the sign of a double
precision number.

If n is negative reverses the
sign cf d. n is discarded.

Mixed Precision Arithmetic Operators

Word

H*

M/

M/MOD

'L]:i'

U/

Stack

nl n2

n d

unl ul

nl*n2

d/n

rem

54

Action

Multiplies two sixteen bit
numbers te give a 32 bit
result.

Divides a 32 bit numbker by a
16 kit number to give a
signed 16 bit guotient and a
signed 16 bit remainder,

Divided an unsigned 32 kit
number by an unsigned 16 bit

number . Returns a 32 bit
Cguotient and a 1é bit
remainder.

Multiplies two unsigned 16 bit
numbers to give an unsigned 32
bit result.

Divides an wunsigned 32 bit
number by an unsigned 16 bit

numbker to give a 16 bit
guotient and a 16 bit
remainder.

Logical Operators

Word Stack Action

AND "nl n2 nl = Logically ANDs the first and
nl AND second stack entries bit by
na bit,

OR nl n2 nl = Logically ORs the first and
nl COR second stack entries bit by
n2 bit.

¥OR nl n2 nl = Logically CRs the first ahd
nl XOR second stack entries bit by
n2 bit.

0= nl HOT nl Performs the logical NOT

functien reversing the truth
state of the first stack entry

Cutput Cperators

Word Stack Action

a signed 16 bit twos
complement number in the
current number base followed
by one space.

1. ul Print the first stack entry as
an unsigned 16 bit number in
the current . number base

followaed by one space.

D. dl Print a signed 32 bit twos
complement number in the
current number base followed
by one space.

? addr Print the contents cf an
address as a signed 16 bit
number followed by cone space.

-R nl n2 Displays the second stack entry
right adjusted in a field
whose width is the first stack
entry. The second stack entry
is printed as a signed number,.

D.ﬁ nl dl Displays the double precision
signed number in a field whose

55

width is the first stack

entry.
Address Dperatoxs
Word Stack Action
d addr nl Replaces an address with the
16 bit contents of the

address. FProncunced fetch.

! addr nl Stores a 16 bit number at the
address. Fronounced store.

+ addr nl dds a 16 bit number to the 16
bit econtents of the address
and leaves the result at the

address. Pronounced plus
store
Ca addr bl Replaces an address with its B

bit contents setting them in
the low order B bits of a 16

bit stack entry. Proncunced
¢ fetch.
] addr bl Stores the low order 8 bita of

a 16 hit stack entry at the
address. Pronounced ¢ store.

28 addr dl Feplaces an address with its
32 kit contents. FPronouncad
two fetch.

21 addr dl Stores a 32 bit number at the
address. Pronounced two store

Eelatiocnal Operators

word Stack Action

nl nZ f Returns a truse flag if the
first two stack entries are
unegual; otherwise returns a
a false flag.

- nl n2 f Returns a true flag if the

first two stack entries are
unequal: otherwise returns a

56

U<

o<

nl n2

nl n?

ul ui

nl

nl

Conditional and Leooping Operators

wWord

IF ...
ELSE ...

ENDIF

THEN
DD " kA

LOOP

Do ...

+LOOP

Sstack

index limit

index

i

limit

57

false flag. The true flag is
agual to the difference
hetween nl and n2.

Returns a true flag if n2 1is
greater than npl. Otherwige
returns a false flag.

Returns a true flag if n2 is
less than nl. Otherwise
returns a false flag.

Returns a true flag if the
unsigned number uZ2 1is less
than the unhsigned number ul.
Otherwise returns a false
flag.

Returns a true flag if nl 1is
equal to zero. Otherwise
returns a false flag.

Returns a true flag if nl 1is
less than zere and thus a
negative number. Otherwise
returns a false flag,

Aotion

IF takes a flag from the stack,
The words after IF are
executad only if the flag is
truea. The words in the
optional ELSE clause are
executed only if the flag is
false. The words after ENDIF
are executed unconditionally.

An alias for ENDIF.

Defines a finite loop. The
index i1s incremented by one on
each passage through the loop.
The loop ends when the limit
is5 reached or passed.

Defines a finite loop. The
index is incremented by the
value n taken from the stack
by +LOOFP on each passage

LEAVE

BEGIN ...

UNTIL f

END i

BEGIN ...
WHILE ... f
REFEAT

BEGIN ...

AGATN

Return Stack COperators

Word Stack
R>

R Il

T

58

through the loop.

If the increment is positive
the loop ends when the index
is equal to or greater than
the limit.

If the increment 1is negative
the loeop ends when the index
is &qual toc or less than +the
limit.

Terminates the executicn of a
finite loop at the next LOOP
or +LOOP.

Defines &an indefinite loop
which is repeated until the
flag taken from the stack by
DNTIL is true.

An alias for UNTIL.

Defines an indefinite loop
which 15 repeated until the
flag taken from the stack by
WHILE is false.

Defines an unconditional loop.

Action

kFemoves one value from the
return stack and places it on
the parameter stack.

Removes one value from the
parameter stack and places it
on the return stack.

Inside a DO LOQP construct
copies the loop index (which
is the top return stack value]
to the parameter stack. 1f
there is more than one nested
loop then it copies the index

| | I
[y n
RP!

cf the innermost loop.

Copies the first return stack
value to the parameter stack.

Flaces the value of the return
stack pointer on the parameter
stack.

Clears the return stack by
reinitialising the return
stack pointer.

bictionary and Memory Management Words

word Stack
ALLOT nl

s b

’ nl

DP addr

HERE addr
BLANKS n addr
ERASE n addr
FILL b n addr

50

Action

Reserves I bytes 1in the
dictionary by advancing the
dictionary pointer.

Stores the lower B8 bits of the
first stack entry in the naxt
free dictionary byte and
advances the dictionary
pcinter one byte. :

Stores the first stack entry
at the next free dictionary
location and advances the
dictionary pointer,

User variable containing the
address of the npext free
dictionary location referred
to as the dictionary pointer.

Leaves the value of the
dictionary pointer which is
the address cof the next free
dictionary location on the
stack.

Fills an area of memory
starting at addr for n kbytes
with apaces [ASCITI 20 hex).

Fills an area of memnory
starting at addr for n -bytes
with Zzeros. .

Filla an area of memory
starting at addr for n bytes

CMOVE n dest source

Defining Words

Word Stack

CREATE

CONSTANT nl

VARIABLE nl

USER nl

<BUILDS

DOES >

60

with the byte b.

Moves n bytes from source to
dest where source and dest are
addresses. The bytes are
moved in order of increasing
memory address.

Action

CREATE coCe creates a
dicticnary header named cccc
with a code address pointing
to the parameter field. Used
by other defining words to
form all dictionary headers.

141 CONSTANT ccce creates a
constant named cccc value n .,
When the constant is used it
leaves 1ts value oh the stack.

n WVARTIABLE ceccc creares a
variable named ecceoc initial
value n . When the wvariable is
used it leaves its address on
the stack.

n USER ¢ccc ecreatesd a user
variable named cooo whose
address is an offset n fram
the usar variakle bazse
register value. When the user
variable i= used i1t leaves its
address in the user wvariable
area.

Used 1in the colon definition

of defining words. Directs
defining word to create
dictionary entry. Always used
with DOQOES>, See High Level

Defining Words.

Used in colon definition of
defining words. Controls run
time behaviour of the glass of
words defined by the defining
word. Always used with
<BUILDS. See High Lavel
Defining Words.

;CODE

{ ;COLE)

oh

COMPILE

[COMPILE]

LITERAL

nl

61

cCoCc creates a4 new word
named coco . All words and
numbers entered until : or
;CODE are compiled 4intoe the
definition unless they are
immediate words which are

executed. : sets the context
vocabulary to current.

Terminates a definition
started hy : .

Ends compilation of the high
level part of a machine code
defining word by compiling
(;CODE).

Runtime procedure compiled by
fCODE which stores a pointer
te the machine code part of
the defining word in the code
field of the latest entry in
the dictionary.

Runtime procedure compiled hy
3 at the end of a c¢olon
definition which returns
control to the calling
procedure when the word is
executed.

Compiles the execution address
of the word following COMPILE
into the dictionary.

Forces compilation of an
immediate word

Suspends compilation within a
colon definition and allows a
segquence of words to be
eXacuted to make a caleulation
for example.

Regumes compilation in a colon
definition.

When compiling compiles the
first stack entry. as a 16 bit
Iiteral. LITERAL is immediate
and is usually used in ceolon
definitions. In the execution
mode it takes no actiaon.

DLITERAL dl

Character and String Operators

Word Stack

(.")

COUNT addr n
R

EMIT C

EXPECT n addr

MEXPECT n addr

MEXIT a

addr

b2

Performs the action of LITERAL
for a double precision number.

Action

literal cococ into the
definition of a word. In the
execution mode the string is

printed immediately.

The runtime procedure complled

by N which outputs an
embedded string.

Converts an address which
points to a string stored in
memory consisting of a byte
containing the length of the
string fol lowed by bytes

cantaining the characters te n
which is the number of bytes
in the string and addr which
peints to the first character.

These stack entries are
nsvually used by TYFE.

Outputs a carriage return and
line feed.

Qutputs the character whoae
ASCIT code is ¢© The user

variahle OUT is incremented to

allow control of formatted
output.

Accepts characters from the
keyboard and stores them
heginning at the address until
return or until n characters
have been received. Two nulls

or ASCII zeros mark the end of
the teXt. '

Similar +to EXPECT.
does hot raturn until
or CHTEL-5TOF
Updates MEXIT.
cursoy movements.

However

RETURN
pressed.
Responds to

Variable
Contains

updated by MEXPECT.
non-zero if CONTROL-

KEY

NUMRE.I

{ NUMBER }

PAD

QUERY

SPACE
SPACES

PTERMINAL

-TRAILTNG

T¥PE

addr

addr d

n

n

acdr

addr

addr d

addr

n addr

b3

STOP pressed.

Waits for a2 key ipput and
roturns the ASCII value,

Converts a string which
consists of a count and that
nhumber of bytes stored at the
address to a signed double
precision number using the
current number base. If there
is a point in the string its
nogition is indicated in the
user wvariable DPJI, ., If the
string canhot be converted an
Crror message 15 given.

Converts ASCII rharacters
stored at addr +1 to digits
and accumulates them into the
the double precision numbex 4.
Returns the address of the
first unconvertable character.
Used hy NUMBFR

Returns an address in the free
memory area above the
dictionary and a fixed offset
from the dictionary pointer
which ¢an be used f{or the
temporary storage of text.

Accepts up to 80 characters
from the koeyboard terminated
hy return to the text input
buffer angd resets IN to zero,

Jutputs a space.
Qutputs n spaces.

If any key 1is being pressed
returns & true flay; otherwise
returns a false [lag.

Returns n which is +the c¢ount
of gharacters in a string
stored at addr adjusted to
eliminate trailing blanks.
The address is returned
unaltered.

Outputs a string of n
characters stored at addr,

WORD

Number Formatting Operators

Word

< ¢

ks

HOLD

S IGH

>

Stack

u addr

64

Reads text from the input
stream using ¢ as a delimiter.
Moves the text to the free
space at the dictionary
pointer with a character count
in the first byte and followed
by two or maore spaces.

Actian

Initiates formatted numeric
output in which a double
precision number is converted
to text at PAD. The texXt
includes +the digits of the
number.

Generates a digit from @ by
dividing by BASE leaving a
gquotient on the stack for
further processing. The ASCII
value of the digit is put into
a string which is build up at
PAD. Always generates a digit
even if it is zero.

Converts a number to a string
of digits by repeating the
action af # until the number
on the stack is zero. Always
generates at least one digit.

Inserts in the string being
built up at PFAD the character
whose ASCII wvalue is on the
stack.

Inserts a minus =ign in the
string heing built up at PAD
if the third stack entry
(immediately kelow the double
precision - number being
converted) is negative.

Completes number conversion by
discarding the doukrle
precision number on the stack
{which is usually zero by this
stage) and leaving a count and
addrese of the string at FAD.
These can be used by TYPFE to

Vocabulary Control Worda

Word Stack

CONTEXT

CUERENT

DEFINITIONS

FORTH

FORGET

IMMEDTATE

LATEST

addy

addr

addr

65

output the string.

Action

User variable which contains
the address of the vocabulary
from which dicticnary searches
are started.

User variable which contains
the address of the vocakbulary
to which new dictionary
entries will be linked.

Makes the current vocabulary
the Same as the context
vocabulary

The name of the primary
vocabulary which initially is
the kernel or core language,
New word definitiong are
automatically added to the
FORTH wocabulary until other
vocabularies are defined by
the user.

Discards the word whose name
fellows FORGET in the input
line from the dictionary and
all subsequent dictionary
entries in dictionary order.

.The Current and context

vocabularies must be the same.

Makes thsa latest entry in
the current vocahulary an

immediate word. Immadiate
words are executed and not
compiled in calon word
definitions making the
compiling process self

extending as well as the rest
of the language.

Returns the name field address
cf the latest entry in the
current vocabulary.

TASE

VYLIST

VOC—-LINK

VOCABULARY

Uger Variables

Waord Starck

S50

RO

TIB

WIDTH

WARNING

addr

addr

addr

addr

addr

6b

A word used toe mark out a
boundary in the dictionary
between groups of word
entries. The group, usually

of words used in the same
application, can be removed as
a whole by FORGET TASK . TASK
does not perform any active
cperation.

Lists on the screen the names
of the words of the context
vocabulary. The listing can
be interrupted from the
keyboard.

User variable which contains
the address of a field in the
most recently defined
vocabulary name word.

pefining word which 1s used to
define vocabulary names.,
VOCABULARY EDITOR is used to
define the word EDRITOR which
when used evokes the EDITOR
vocabulary by placing its
address in CONTEXT.

Action

Initial value of parameter
stack pointer.

Tnitial wvalue of returh stack
pointer.

Address of terminal input
buffer.

Number of characters used to
identify word names in the
dictionary. The permitted
range is 1 to 31.

Controls the treatment of
error conditions.

0 Error message numbers only
given.

FENCE

LP

VOC-LINE

BLE

IN

ou'T

SCR

OFFSET

addr

addr

addr

addr

addr

addr

addr

addr

67

1l An error message relative
to line 0 screen 4 drive 1
is printed.

-1 [(ABORT) is executad.
{ABORT) may contain a user
defined errar procedure.

Marks the end of the protected
dictionary; below this address
the operation of FORGET is
trapped.

The dictionary pointer is the
address of the first free
dicticnary location.

Contains the address of the
last field af the most
recently c¢reated wvecabulary.
The fields 1link wvocabulary
names.

Contains the number of the
block being interpreted unless
the number is zero 1in which
case the terminal buffer is
interpreted.

Contains an offset from the
start of the terminal input
huffar or block being
interpreted. Altered by each
successive call of WORD.

Incremented by each use of
EMIT to output a characrer.
May be used for output
formatting.

Contains the number of the
SCreen most recently
referenced by LIST,.

Contains a block offset used
when the disc drives or other
mass storage are accessed.
Does not affect the behaviour
of MESSAGE which always
relates +to line 0 socreen 4
drive 1.

Word Stack

CONTEXT

CURRENT

STATE

BASE

DPL

FLD

CSF

R#

HLD

addr

addr

addr

addr

addr

addr

addr

addr

addr

1

Action

Contains the address of the
vocabulary within which
dictionary searches begin.

Contains the address of the
vocabulary To which new
eptries in the dicticnary will
be linked.

Controls operation of text
interpreter. If STATE
contalns a hon zero value then
words and numbers are compiled
and not executed unless the
words are immediate words.

Contains current number base.

Contains the number of digits
to the right of the peint in
the last double precision
number entered or -1 if the
last number entered was single
precision. May be used to
hold the column position of
the peint in formatted number
cutput.

May be used to control field
width in formatted nunmber
output.

May be used to store parameter
stack pointer position for
error checking during
compiling.

Contains the current position
of the editing cursor.

Contalns a pointer to the
current character position 1h
the text at pad during number
output.

System Constants

wWord Stack

01 2 3

BIL
C/L

FIRST

LIMIT

B/BUF

B/SCR

System QOperators

Word Stack
|

DECIMAL

HEX

EXECTUTE addr
CFA pfa

addr

cfa

69

Action

The numbers =zero one two and
three are in the dictionary
and 80 available in any number
base.

Returns ASCII space 20 hex.
Characters per line,

Leaves address of first block
buffer.

Leaves the first address after
that wused by the last bhlock
buffer.

The number of bytes in each
block buffer.

The number of buffers needed
for sach screen.

Action

Tick is used in the seguence
ccce and leaves the parameter
field address of the word ceceoc
which must be in a currently
accessible vocabulary.

Together with) delineates 2
a comment which is ignored by
the text interpreter.

S5ets the number hase to
decimal .

Sets the number kage to
hexadecimal or base 16.

Executes the word whose code
field address is on the stack.

Converts the parameter field
address of a word to the code
field address.

wWord

LFA

HEA

PFA

TRAVEERGE

TOGGLE

guUIT

COLD

WARM

BYE

+ORIGIN

PE

Stack

pfa

nfa

n addr

b addr

1fa

nfa

pfa

addr

addr

data

70

ACtion

Converts the parameter field
address of a word to the link
field address.

Converts the parameter field
address of a word to the name
field address.

Converts the name ficld
address af a word to the
parameter field address.

Traversas the variahle 1length
name field of a word.

If n = 1 converts the address
of the length byte to that of
the last letter.

If n = -1 ponverts the address
of the last letter to that of
the length byte.

Exclusive ORs the byte at the
address with the bit mask b .

Stops compilation, clears the

return stack and returns
control to the terminal
without printing the message
QK

Restarts language clearing
dictionary buffers and stacks
allocating Memory in
acoordance with cold start
parameters.

Regtarts language clearing
buffers and stacks.

Exit to operating system or
monitor.

Converts the offset n to a
memory addrass in the lowest
part of memory used by the
language. This area is
reserved for certain cold
start and system parameters.

Reads port number n and leaves
result on the stack.

B!

TASK

NOOF

-CPO

NULL

LTIT

INTERFRET

{DOQ}
{LOOP)
{+LO0OP)
BACK
BEANCH
OBRANCH

DIGIT
{FIND)
-FIND
ENCLOSE

SMUDGE

n

data

71

Writes data (a single
preclgion integer between 0
and 255) to port number n.

Marks the end of the kernel
in the dictionary and pexrforms
n¢ active operation,

Forth non cperation.

Prints the name of the system
CFO,

ASCII zero which 1Is always
the last word of interpretable
text.

The run time proeedure which
pushes to the stack the 16 bit
number following its address
embedded in compiled code.
Automatically used when
numbers appear in celen
definitions and other compiled
text.

Text interpreter which
interprets the text it obtains
frem repeated calls to WORD.
Return to the calling word is
affected by the execution of
NULL which is the BASCII zeroc
always placed at the end of
the text being interpreted.

The run time procedures which
implement the conditional and
looping structures. May be
used only inside word
definitions.

Internal procadures whose
funetions are available to the
user through other words,

Used in compilation to set and
reset a bit in the length byte
of each dictionary header.
The smudge bit is used to make
a word whose compiled code is
incomplete inhaccessible until
campilation is completed
without error.

Virtual

word

BLOCK

+BUF

BUFFER

Memory Operators

Stack

n addr
addr f addr
n addr

EMFTY-BUFFERS

FLUSH

TNDEX

.LINE

{LINE)

LIST

LOAD

to from

sCr line

scr lihe n addr

12

Action

Leaves the address of +the
buffer containing block n
having read the Dblock from
tape 1if 1t is not already
resident.

Daing the addrezss of the
current buffer returns the
address of the next buffer.
The flag is false when the
address returned 1is that in
FREV .

Obtains the next free buffer
and assigng it teo block n
returning its address. The
existing contents of the
buifer are written to tape If
necessary.

Marks all buffers as empty.
The contents are not written
to tape.

Writes all updated buffers to
tape.

Displays the first line of
each screen in the range from
tco . These lines are usually
used to describe the contents
of each screen in a comment.

Print a line of text accessed
by line and screen number.

Returns the buffer address and
number of characters in a line
accessed by line and screen
number,

Display the text of Bscreen
n . n is also stored 1in the
user variable 5CR

Intefpret the text . of screen
n -+

KWord

R/W

WRITE-CHAR

READ-CHAR

WRITE-HEAD

WRITE-BODY

FILES

READ-HEAD

READ-BODY =&

BLOCE-FIND n

BLOCK-READ n

stack

f blk addr

&

c

al

n

f

73

Action

Reads from and writes to tape
or other mass storage. The
flag indicates the operation
0 write 1 read . 'The number
blk specifies the block number
and the address is that of the
buffer assigned to the block.

Writes n to tape interface.
Returns f=1 if error.

Reads character from tape.
f=] if error occurred in which
Case n meahingless,

Writes a header to tape ¢
bytes long starting at addr a
prefixed by 8 EA Hex chars.
Returns f=1 if error ocecurs.

Writes 1k hlock starting at
addr a plus a checksum to
tape. Returns f£=1 Jif an
error oocurs.

Forms string at PAD in the
form BSCRN#nnn where n is the
gcreen number returns a=PAD
AND =8,

Reads tape locking for file
with name given by string
starting at a with length c.
Returns £=1 and no al if error
or =0 if OK with al. If al=0
then the file W 5 f ound
otherwise al= the start of the
string name of the file found.

Reads lk bytes and places them
starting at addr a. Reads
checksum & returns =1 if
error Lound.

Searches tape for SCRNEnnn.
Aborts if an error found.

Reads block n from tape
putting in buffer starting at
address a.

BLOCK-WRITE n a

TRIAD In

UOPDATE

Error Control Words

Word Stack

ERROR n BLEK
{ ABORT)

LBOHT

IN

74

Writes block n to tape using
data starting at address a.

Displays the +text of three
screens including screen gl
starting with a screen number
evenly divisikle by three,
Alse prints as a reference
line line 15 of screen 4 .

Marks the most recently
referenced block pointed to by
PREV a5 altered. This block
will be rewritten to tape when
its buffer is zreused or by
FLUSH.

Next ECraerl continues
interpretation with the next
sCcreen,

Terminates interpretation of a
S5Craan.

Action
Reports Error number or
message and restarts. Action

depends on the wvalue of the
user variable WARNING.

If WARNING = 0 then n 1is
printed as a mesgage number.
If WARNING =1 the text of

line n relative to line 0 of
SCreen | of drive U 15
printed.

If WARNING = -1 then { ABORT)
i1s executed.

IN and BLE are left on the
stack to locate the cause of
the error.

Executes ABORT . May be
altered to execute user chosen
error procedure.

Cléars stacks and returns
contreol Lo terminal in
execution mode. The system
message is printed.

word Stack
iD. addr
?ERROR n f
fCOME

TCSP

TEXEC

FLOADTHG

*PARIRS nl n2
?ETACK

[CEP

MESSAGE n

Editor Words

Word Stack

TNUM rf or
tf n

ALTER n

15

Action

Prints the name of a word from
1ts name field address.
I88ue error message n only 1If
the flag is true.

if

Isasue error not

compiling,

message

if stack
from walue

Issue error message
pointer differs
saved in CSP .

Issue error message if not
executing.

Issue error message if not
loading.

Issue error message if nl .and
n2 are not egqual. Used to
detect incerrectly formed
conditional econstructs.

Issue error message if +the
stack has underf lowed or
overflowed.,

Saves value of stack pointer
in CSE, Used to detect
compiling errors.

Prints the text of line n
relative to line 0 of screen 4
of drive 0 unless WARNING is
zero in which case only +the
message number will be
printed.

Action

Attemps to conwvert the string

at HERE preceded by a count to
a single precision number.
Returns the number plus +true
flag or a false flag.

Moves the data at HERE to line
n on the current screen {given
by SCR). Trims the line to 64

Word

EDIT

EDITOR

WHERE

n

n

Stack

5

76

Action
chs if it is longer,
Edits screen n.

The name of the editor
vocabulary

Prints line containing char
number n in block 5 together
with an arrow. Used when
correcting program errors.

